Entropic descriptors of quantum communications in molecules
Abstract The classical Information Theory (IT) deals with entropic descriptors of the probability distributions and probability-propagation (communication) systems, e.g., the electronic channels in molecules reflecting the information scattering via the system chemical bonds. The quantum IT addition...
Ausführliche Beschreibung
Autor*in: |
Nalewajski, Roman F. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of mathematical chemistry - Springer International Publishing, 1987, 53(2014), 1 vom: 25. Okt., Seite 1-28 |
---|---|
Übergeordnetes Werk: |
volume:53 ; year:2014 ; number:1 ; day:25 ; month:10 ; pages:1-28 |
Links: |
---|
DOI / URN: |
10.1007/s10910-014-0405-2 |
---|
Katalog-ID: |
OLC2060420555 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2060420555 | ||
003 | DE-627 | ||
005 | 20230518172315.0 | ||
007 | tu | ||
008 | 200819s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10910-014-0405-2 |2 doi | |
035 | |a (DE-627)OLC2060420555 | ||
035 | |a (DE-He213)s10910-014-0405-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 540 |q VZ |
100 | 1 | |a Nalewajski, Roman F. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Entropic descriptors of quantum communications in molecules |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2014 | ||
520 | |a Abstract The classical Information Theory (IT) deals with entropic descriptors of the probability distributions and probability-propagation (communication) systems, e.g., the electronic channels in molecules reflecting the information scattering via the system chemical bonds. The quantum IT additionally accounts for the non-classical (current/phase)-related contributions in the resultant information content of electronic states. The classical and non-classical terms in the quantum Shannon entropy and Fisher information are reexamined. The associated probability-propagation and current-scattering networks are introduced and their Fisher- and Shannon-type descriptors are identified. The non-additive and additive information descriptors of the probability channels in both the Atomic Orbital and local resolution levels are related to the network conditional-entropy and mutual-information, which represent the IT covalency and ionicity components in the classical communication theory of the chemical bond. A similar partition identifies the associated bond indices in the molecular current/phase channels. The resultant bond descriptors combining the classical and non-classical terms, due to the probability and current distributions, respectively, are proposed as generalized communication-noise (covalency) and information-flow (iconicity) concepts in the quantum IT. | ||
650 | 4 | |a Bond multiplicity descriptors | |
650 | 4 | |a Communication systems | |
650 | 4 | |a Local communications | |
650 | 4 | |a Orbital communications | |
650 | 4 | |a Probability/current distributions | |
650 | 4 | |a Quantum information measures | |
773 | 0 | 8 | |i Enthalten in |t Journal of mathematical chemistry |d Springer International Publishing, 1987 |g 53(2014), 1 vom: 25. Okt., Seite 1-28 |w (DE-627)129246441 |w (DE-600)59132-4 |w (DE-576)27906036X |x 0259-9791 |7 nnns |
773 | 1 | 8 | |g volume:53 |g year:2014 |g number:1 |g day:25 |g month:10 |g pages:1-28 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10910-014-0405-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4012 | ||
951 | |a AR | ||
952 | |d 53 |j 2014 |e 1 |b 25 |c 10 |h 1-28 |
author_variant |
r f n rf rfn |
---|---|
matchkey_str |
article:02599791:2014----::nrpcecitroqatmomnct |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s10910-014-0405-2 doi (DE-627)OLC2060420555 (DE-He213)s10910-014-0405-2-p DE-627 ger DE-627 rakwb eng 510 540 VZ Nalewajski, Roman F. verfasserin aut Entropic descriptors of quantum communications in molecules 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2014 Abstract The classical Information Theory (IT) deals with entropic descriptors of the probability distributions and probability-propagation (communication) systems, e.g., the electronic channels in molecules reflecting the information scattering via the system chemical bonds. The quantum IT additionally accounts for the non-classical (current/phase)-related contributions in the resultant information content of electronic states. The classical and non-classical terms in the quantum Shannon entropy and Fisher information are reexamined. The associated probability-propagation and current-scattering networks are introduced and their Fisher- and Shannon-type descriptors are identified. The non-additive and additive information descriptors of the probability channels in both the Atomic Orbital and local resolution levels are related to the network conditional-entropy and mutual-information, which represent the IT covalency and ionicity components in the classical communication theory of the chemical bond. A similar partition identifies the associated bond indices in the molecular current/phase channels. The resultant bond descriptors combining the classical and non-classical terms, due to the probability and current distributions, respectively, are proposed as generalized communication-noise (covalency) and information-flow (iconicity) concepts in the quantum IT. Bond multiplicity descriptors Communication systems Local communications Orbital communications Probability/current distributions Quantum information measures Enthalten in Journal of mathematical chemistry Springer International Publishing, 1987 53(2014), 1 vom: 25. Okt., Seite 1-28 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:53 year:2014 number:1 day:25 month:10 pages:1-28 https://doi.org/10.1007/s10910-014-0405-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 AR 53 2014 1 25 10 1-28 |
spelling |
10.1007/s10910-014-0405-2 doi (DE-627)OLC2060420555 (DE-He213)s10910-014-0405-2-p DE-627 ger DE-627 rakwb eng 510 540 VZ Nalewajski, Roman F. verfasserin aut Entropic descriptors of quantum communications in molecules 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2014 Abstract The classical Information Theory (IT) deals with entropic descriptors of the probability distributions and probability-propagation (communication) systems, e.g., the electronic channels in molecules reflecting the information scattering via the system chemical bonds. The quantum IT additionally accounts for the non-classical (current/phase)-related contributions in the resultant information content of electronic states. The classical and non-classical terms in the quantum Shannon entropy and Fisher information are reexamined. The associated probability-propagation and current-scattering networks are introduced and their Fisher- and Shannon-type descriptors are identified. The non-additive and additive information descriptors of the probability channels in both the Atomic Orbital and local resolution levels are related to the network conditional-entropy and mutual-information, which represent the IT covalency and ionicity components in the classical communication theory of the chemical bond. A similar partition identifies the associated bond indices in the molecular current/phase channels. The resultant bond descriptors combining the classical and non-classical terms, due to the probability and current distributions, respectively, are proposed as generalized communication-noise (covalency) and information-flow (iconicity) concepts in the quantum IT. Bond multiplicity descriptors Communication systems Local communications Orbital communications Probability/current distributions Quantum information measures Enthalten in Journal of mathematical chemistry Springer International Publishing, 1987 53(2014), 1 vom: 25. Okt., Seite 1-28 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:53 year:2014 number:1 day:25 month:10 pages:1-28 https://doi.org/10.1007/s10910-014-0405-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 AR 53 2014 1 25 10 1-28 |
allfields_unstemmed |
10.1007/s10910-014-0405-2 doi (DE-627)OLC2060420555 (DE-He213)s10910-014-0405-2-p DE-627 ger DE-627 rakwb eng 510 540 VZ Nalewajski, Roman F. verfasserin aut Entropic descriptors of quantum communications in molecules 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2014 Abstract The classical Information Theory (IT) deals with entropic descriptors of the probability distributions and probability-propagation (communication) systems, e.g., the electronic channels in molecules reflecting the information scattering via the system chemical bonds. The quantum IT additionally accounts for the non-classical (current/phase)-related contributions in the resultant information content of electronic states. The classical and non-classical terms in the quantum Shannon entropy and Fisher information are reexamined. The associated probability-propagation and current-scattering networks are introduced and their Fisher- and Shannon-type descriptors are identified. The non-additive and additive information descriptors of the probability channels in both the Atomic Orbital and local resolution levels are related to the network conditional-entropy and mutual-information, which represent the IT covalency and ionicity components in the classical communication theory of the chemical bond. A similar partition identifies the associated bond indices in the molecular current/phase channels. The resultant bond descriptors combining the classical and non-classical terms, due to the probability and current distributions, respectively, are proposed as generalized communication-noise (covalency) and information-flow (iconicity) concepts in the quantum IT. Bond multiplicity descriptors Communication systems Local communications Orbital communications Probability/current distributions Quantum information measures Enthalten in Journal of mathematical chemistry Springer International Publishing, 1987 53(2014), 1 vom: 25. Okt., Seite 1-28 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:53 year:2014 number:1 day:25 month:10 pages:1-28 https://doi.org/10.1007/s10910-014-0405-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 AR 53 2014 1 25 10 1-28 |
allfieldsGer |
10.1007/s10910-014-0405-2 doi (DE-627)OLC2060420555 (DE-He213)s10910-014-0405-2-p DE-627 ger DE-627 rakwb eng 510 540 VZ Nalewajski, Roman F. verfasserin aut Entropic descriptors of quantum communications in molecules 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2014 Abstract The classical Information Theory (IT) deals with entropic descriptors of the probability distributions and probability-propagation (communication) systems, e.g., the electronic channels in molecules reflecting the information scattering via the system chemical bonds. The quantum IT additionally accounts for the non-classical (current/phase)-related contributions in the resultant information content of electronic states. The classical and non-classical terms in the quantum Shannon entropy and Fisher information are reexamined. The associated probability-propagation and current-scattering networks are introduced and their Fisher- and Shannon-type descriptors are identified. The non-additive and additive information descriptors of the probability channels in both the Atomic Orbital and local resolution levels are related to the network conditional-entropy and mutual-information, which represent the IT covalency and ionicity components in the classical communication theory of the chemical bond. A similar partition identifies the associated bond indices in the molecular current/phase channels. The resultant bond descriptors combining the classical and non-classical terms, due to the probability and current distributions, respectively, are proposed as generalized communication-noise (covalency) and information-flow (iconicity) concepts in the quantum IT. Bond multiplicity descriptors Communication systems Local communications Orbital communications Probability/current distributions Quantum information measures Enthalten in Journal of mathematical chemistry Springer International Publishing, 1987 53(2014), 1 vom: 25. Okt., Seite 1-28 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:53 year:2014 number:1 day:25 month:10 pages:1-28 https://doi.org/10.1007/s10910-014-0405-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 AR 53 2014 1 25 10 1-28 |
allfieldsSound |
10.1007/s10910-014-0405-2 doi (DE-627)OLC2060420555 (DE-He213)s10910-014-0405-2-p DE-627 ger DE-627 rakwb eng 510 540 VZ Nalewajski, Roman F. verfasserin aut Entropic descriptors of quantum communications in molecules 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2014 Abstract The classical Information Theory (IT) deals with entropic descriptors of the probability distributions and probability-propagation (communication) systems, e.g., the electronic channels in molecules reflecting the information scattering via the system chemical bonds. The quantum IT additionally accounts for the non-classical (current/phase)-related contributions in the resultant information content of electronic states. The classical and non-classical terms in the quantum Shannon entropy and Fisher information are reexamined. The associated probability-propagation and current-scattering networks are introduced and their Fisher- and Shannon-type descriptors are identified. The non-additive and additive information descriptors of the probability channels in both the Atomic Orbital and local resolution levels are related to the network conditional-entropy and mutual-information, which represent the IT covalency and ionicity components in the classical communication theory of the chemical bond. A similar partition identifies the associated bond indices in the molecular current/phase channels. The resultant bond descriptors combining the classical and non-classical terms, due to the probability and current distributions, respectively, are proposed as generalized communication-noise (covalency) and information-flow (iconicity) concepts in the quantum IT. Bond multiplicity descriptors Communication systems Local communications Orbital communications Probability/current distributions Quantum information measures Enthalten in Journal of mathematical chemistry Springer International Publishing, 1987 53(2014), 1 vom: 25. Okt., Seite 1-28 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:53 year:2014 number:1 day:25 month:10 pages:1-28 https://doi.org/10.1007/s10910-014-0405-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 AR 53 2014 1 25 10 1-28 |
language |
English |
source |
Enthalten in Journal of mathematical chemistry 53(2014), 1 vom: 25. Okt., Seite 1-28 volume:53 year:2014 number:1 day:25 month:10 pages:1-28 |
sourceStr |
Enthalten in Journal of mathematical chemistry 53(2014), 1 vom: 25. Okt., Seite 1-28 volume:53 year:2014 number:1 day:25 month:10 pages:1-28 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bond multiplicity descriptors Communication systems Local communications Orbital communications Probability/current distributions Quantum information measures |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of mathematical chemistry |
authorswithroles_txt_mv |
Nalewajski, Roman F. @@aut@@ |
publishDateDaySort_date |
2014-10-25T00:00:00Z |
hierarchy_top_id |
129246441 |
dewey-sort |
3510 |
id |
OLC2060420555 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060420555</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230518172315.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10910-014-0405-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060420555</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10910-014-0405-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nalewajski, Roman F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Entropic descriptors of quantum communications in molecules</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The classical Information Theory (IT) deals with entropic descriptors of the probability distributions and probability-propagation (communication) systems, e.g., the electronic channels in molecules reflecting the information scattering via the system chemical bonds. The quantum IT additionally accounts for the non-classical (current/phase)-related contributions in the resultant information content of electronic states. The classical and non-classical terms in the quantum Shannon entropy and Fisher information are reexamined. The associated probability-propagation and current-scattering networks are introduced and their Fisher- and Shannon-type descriptors are identified. The non-additive and additive information descriptors of the probability channels in both the Atomic Orbital and local resolution levels are related to the network conditional-entropy and mutual-information, which represent the IT covalency and ionicity components in the classical communication theory of the chemical bond. A similar partition identifies the associated bond indices in the molecular current/phase channels. The resultant bond descriptors combining the classical and non-classical terms, due to the probability and current distributions, respectively, are proposed as generalized communication-noise (covalency) and information-flow (iconicity) concepts in the quantum IT.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bond multiplicity descriptors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Communication systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local communications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orbital communications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability/current distributions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum information measures</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical chemistry</subfield><subfield code="d">Springer International Publishing, 1987</subfield><subfield code="g">53(2014), 1 vom: 25. Okt., Seite 1-28</subfield><subfield code="w">(DE-627)129246441</subfield><subfield code="w">(DE-600)59132-4</subfield><subfield code="w">(DE-576)27906036X</subfield><subfield code="x">0259-9791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:25</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1-28</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10910-014-0405-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">25</subfield><subfield code="c">10</subfield><subfield code="h">1-28</subfield></datafield></record></collection>
|
author |
Nalewajski, Roman F. |
spellingShingle |
Nalewajski, Roman F. ddc 510 misc Bond multiplicity descriptors misc Communication systems misc Local communications misc Orbital communications misc Probability/current distributions misc Quantum information measures Entropic descriptors of quantum communications in molecules |
authorStr |
Nalewajski, Roman F. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129246441 |
format |
Article |
dewey-ones |
510 - Mathematics 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0259-9791 |
topic_title |
510 540 VZ Entropic descriptors of quantum communications in molecules Bond multiplicity descriptors Communication systems Local communications Orbital communications Probability/current distributions Quantum information measures |
topic |
ddc 510 misc Bond multiplicity descriptors misc Communication systems misc Local communications misc Orbital communications misc Probability/current distributions misc Quantum information measures |
topic_unstemmed |
ddc 510 misc Bond multiplicity descriptors misc Communication systems misc Local communications misc Orbital communications misc Probability/current distributions misc Quantum information measures |
topic_browse |
ddc 510 misc Bond multiplicity descriptors misc Communication systems misc Local communications misc Orbital communications misc Probability/current distributions misc Quantum information measures |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of mathematical chemistry |
hierarchy_parent_id |
129246441 |
dewey-tens |
510 - Mathematics 540 - Chemistry |
hierarchy_top_title |
Journal of mathematical chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X |
title |
Entropic descriptors of quantum communications in molecules |
ctrlnum |
(DE-627)OLC2060420555 (DE-He213)s10910-014-0405-2-p |
title_full |
Entropic descriptors of quantum communications in molecules |
author_sort |
Nalewajski, Roman F. |
journal |
Journal of mathematical chemistry |
journalStr |
Journal of mathematical chemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Nalewajski, Roman F. |
container_volume |
53 |
class |
510 540 VZ |
format_se |
Aufsätze |
author-letter |
Nalewajski, Roman F. |
doi_str_mv |
10.1007/s10910-014-0405-2 |
dewey-full |
510 540 |
title_sort |
entropic descriptors of quantum communications in molecules |
title_auth |
Entropic descriptors of quantum communications in molecules |
abstract |
Abstract The classical Information Theory (IT) deals with entropic descriptors of the probability distributions and probability-propagation (communication) systems, e.g., the electronic channels in molecules reflecting the information scattering via the system chemical bonds. The quantum IT additionally accounts for the non-classical (current/phase)-related contributions in the resultant information content of electronic states. The classical and non-classical terms in the quantum Shannon entropy and Fisher information are reexamined. The associated probability-propagation and current-scattering networks are introduced and their Fisher- and Shannon-type descriptors are identified. The non-additive and additive information descriptors of the probability channels in both the Atomic Orbital and local resolution levels are related to the network conditional-entropy and mutual-information, which represent the IT covalency and ionicity components in the classical communication theory of the chemical bond. A similar partition identifies the associated bond indices in the molecular current/phase channels. The resultant bond descriptors combining the classical and non-classical terms, due to the probability and current distributions, respectively, are proposed as generalized communication-noise (covalency) and information-flow (iconicity) concepts in the quantum IT. © The Author(s) 2014 |
abstractGer |
Abstract The classical Information Theory (IT) deals with entropic descriptors of the probability distributions and probability-propagation (communication) systems, e.g., the electronic channels in molecules reflecting the information scattering via the system chemical bonds. The quantum IT additionally accounts for the non-classical (current/phase)-related contributions in the resultant information content of electronic states. The classical and non-classical terms in the quantum Shannon entropy and Fisher information are reexamined. The associated probability-propagation and current-scattering networks are introduced and their Fisher- and Shannon-type descriptors are identified. The non-additive and additive information descriptors of the probability channels in both the Atomic Orbital and local resolution levels are related to the network conditional-entropy and mutual-information, which represent the IT covalency and ionicity components in the classical communication theory of the chemical bond. A similar partition identifies the associated bond indices in the molecular current/phase channels. The resultant bond descriptors combining the classical and non-classical terms, due to the probability and current distributions, respectively, are proposed as generalized communication-noise (covalency) and information-flow (iconicity) concepts in the quantum IT. © The Author(s) 2014 |
abstract_unstemmed |
Abstract The classical Information Theory (IT) deals with entropic descriptors of the probability distributions and probability-propagation (communication) systems, e.g., the electronic channels in molecules reflecting the information scattering via the system chemical bonds. The quantum IT additionally accounts for the non-classical (current/phase)-related contributions in the resultant information content of electronic states. The classical and non-classical terms in the quantum Shannon entropy and Fisher information are reexamined. The associated probability-propagation and current-scattering networks are introduced and their Fisher- and Shannon-type descriptors are identified. The non-additive and additive information descriptors of the probability channels in both the Atomic Orbital and local resolution levels are related to the network conditional-entropy and mutual-information, which represent the IT covalency and ionicity components in the classical communication theory of the chemical bond. A similar partition identifies the associated bond indices in the molecular current/phase channels. The resultant bond descriptors combining the classical and non-classical terms, due to the probability and current distributions, respectively, are proposed as generalized communication-noise (covalency) and information-flow (iconicity) concepts in the quantum IT. © The Author(s) 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 |
container_issue |
1 |
title_short |
Entropic descriptors of quantum communications in molecules |
url |
https://doi.org/10.1007/s10910-014-0405-2 |
remote_bool |
false |
ppnlink |
129246441 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10910-014-0405-2 |
up_date |
2024-07-04T01:18:05.012Z |
_version_ |
1803609319683391488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060420555</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230518172315.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10910-014-0405-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060420555</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10910-014-0405-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nalewajski, Roman F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Entropic descriptors of quantum communications in molecules</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The classical Information Theory (IT) deals with entropic descriptors of the probability distributions and probability-propagation (communication) systems, e.g., the electronic channels in molecules reflecting the information scattering via the system chemical bonds. The quantum IT additionally accounts for the non-classical (current/phase)-related contributions in the resultant information content of electronic states. The classical and non-classical terms in the quantum Shannon entropy and Fisher information are reexamined. The associated probability-propagation and current-scattering networks are introduced and their Fisher- and Shannon-type descriptors are identified. The non-additive and additive information descriptors of the probability channels in both the Atomic Orbital and local resolution levels are related to the network conditional-entropy and mutual-information, which represent the IT covalency and ionicity components in the classical communication theory of the chemical bond. A similar partition identifies the associated bond indices in the molecular current/phase channels. The resultant bond descriptors combining the classical and non-classical terms, due to the probability and current distributions, respectively, are proposed as generalized communication-noise (covalency) and information-flow (iconicity) concepts in the quantum IT.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bond multiplicity descriptors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Communication systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local communications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orbital communications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability/current distributions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum information measures</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical chemistry</subfield><subfield code="d">Springer International Publishing, 1987</subfield><subfield code="g">53(2014), 1 vom: 25. Okt., Seite 1-28</subfield><subfield code="w">(DE-627)129246441</subfield><subfield code="w">(DE-600)59132-4</subfield><subfield code="w">(DE-576)27906036X</subfield><subfield code="x">0259-9791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:25</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1-28</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10910-014-0405-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">25</subfield><subfield code="c">10</subfield><subfield code="h">1-28</subfield></datafield></record></collection>
|
score |
7.399315 |