Complex entropy and resultant information measures
Abstract Classical and nonclassical contributions to Author’s resultant Shannon- and Fisher-type measures of the information content in general electronic state $$\varphi ( {\varvec{r}} ) =R( {\varvec{r}}) \hbox { exp}[\hbox {i}\phi ( {\varvec{r}} )]$$, due to the state probability density $$p( {\va...
Ausführliche Beschreibung
Autor*in: |
Nalewajski, Roman F. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of mathematical chemistry - Springer International Publishing, 1987, 54(2016), 9 vom: 06. Juni, Seite 1777-1782 |
---|---|
Übergeordnetes Werk: |
volume:54 ; year:2016 ; number:9 ; day:06 ; month:06 ; pages:1777-1782 |
Links: |
---|
DOI / URN: |
10.1007/s10910-016-0651-6 |
---|
Katalog-ID: |
OLC206042271X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC206042271X | ||
003 | DE-627 | ||
005 | 20230518172320.0 | ||
007 | tu | ||
008 | 200819s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10910-016-0651-6 |2 doi | |
035 | |a (DE-627)OLC206042271X | ||
035 | |a (DE-He213)s10910-016-0651-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 540 |q VZ |
100 | 1 | |a Nalewajski, Roman F. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Complex entropy and resultant information measures |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2016 | ||
520 | |a Abstract Classical and nonclassical contributions to Author’s resultant Shannon- and Fisher-type measures of the information content in general electronic state $$\varphi ( {\varvec{r}} ) =R( {\varvec{r}}) \hbox { exp}[\hbox {i}\phi ( {\varvec{r}} )]$$, due to the state probability density $$p( {\varvec{r}} ) =R( {\varvec{r}} )^{2}$$ and its phase $$\phi ( {\varvec{r}} )$$ or current $${\varvec{j}}( {\varvec{r}} )=\left( \hbar /m \right) p( {\varvec{r}} )\nabla \phi \left( {\varvec{r}} \right) $$ distributions, respectively, are reexamined. The components of the overall entropy, S[φ]≡-∫p(r)[lnp(r)+2ϕ(r)]dr≡S[p]+S[ϕ],$$\begin{aligned} S[\varphi ]\equiv -\int {p({\varvec{r}})[\ln p({\varvec{r}})+ 2\phi ( {\varvec{r}} )] \,d{\varvec{r}}\equiv S[p]+S[\phi ]}, \end{aligned}$$are shown to determine the real and imaginary parts of the state complex Shannon entropy, H[φ]≡-2φ|lnφ|φ=Sp+iS[ϕ],$$\begin{aligned} H[\varphi ]\equiv -2\left\langle {\varphi |\ln \varphi |\varphi } \right\rangle =S\left[ p \right] +\hbox {i}S[\phi ], \end{aligned}$$a natural quantum-amplitude generalization of the classical Shannon entropy. Its contributions are related to the associated terms in the state resultant Fisher information, I[φ]≡-4⟨φ|∇2|φ⟩≡∫p(r){[∇lnp(r)]2+[2∇ϕr]2}dr≡I[p]+I[ϕ]=I[p]+∫p(r)[(2m/ħ)j(r)/p(r)]2dr≡I[p]+I[j],$$\begin{aligned} I[\varphi ]\equiv & {} -4\langle {\varphi |\nabla ^{2}|\varphi } \rangle \equiv \int {p({\varvec{r}})\{[} \nabla \ln p({\varvec{r}})]^{2}+[2\nabla \phi \left( {\varvec{r}} \right) ]^{2}\}\,d{\varvec{r}}\equiv I[p]+I[\phi ] \\= & {} I[p]+\int {p({\varvec{r}})[(2m/\hbar ){\varvec{j}}({\varvec{r}})/p({\varvec{r}})]^{2}\,d{\varvec{r}}\equiv I[p]+I[{\varvec{j}}],} \\ \end{aligned}$$and the gradient entropy: I~[φ]≡⟨φ|[(∇lnp)2+(i2∇ϕ)2]|φ⟩=I[p]-I[ϕ]=I~[p]+I~[ϕ].$$\begin{aligned} \tilde{I}[\varphi ]\equiv \langle {\varphi |[(\nabla \ln p)^{2}+(\hbox {i}2\nabla \phi )^{2}]|\varphi } \rangle =I[p]-I[\phi ]=\tilde{I}[p]+\tilde{I}[\phi ]. \end{aligned}$$ | ||
650 | 4 | |a Complex entropy | |
650 | 4 | |a Fisher information | |
650 | 4 | |a Information theory | |
650 | 4 | |a Nonclassical information | |
650 | 4 | |a Resultant information measures | |
650 | 4 | |a Shannon entropy | |
773 | 0 | 8 | |i Enthalten in |t Journal of mathematical chemistry |d Springer International Publishing, 1987 |g 54(2016), 9 vom: 06. Juni, Seite 1777-1782 |w (DE-627)129246441 |w (DE-600)59132-4 |w (DE-576)27906036X |x 0259-9791 |7 nnns |
773 | 1 | 8 | |g volume:54 |g year:2016 |g number:9 |g day:06 |g month:06 |g pages:1777-1782 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10910-016-0651-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4012 | ||
951 | |a AR | ||
952 | |d 54 |j 2016 |e 9 |b 06 |c 06 |h 1777-1782 |
author_variant |
r f n rf rfn |
---|---|
matchkey_str |
article:02599791:2016----::opeetoynrslatnom |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s10910-016-0651-6 doi (DE-627)OLC206042271X (DE-He213)s10910-016-0651-6-p DE-627 ger DE-627 rakwb eng 510 540 VZ Nalewajski, Roman F. verfasserin aut Complex entropy and resultant information measures 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2016 Abstract Classical and nonclassical contributions to Author’s resultant Shannon- and Fisher-type measures of the information content in general electronic state $$\varphi ( {\varvec{r}} ) =R( {\varvec{r}}) \hbox { exp}[\hbox {i}\phi ( {\varvec{r}} )]$$, due to the state probability density $$p( {\varvec{r}} ) =R( {\varvec{r}} )^{2}$$ and its phase $$\phi ( {\varvec{r}} )$$ or current $${\varvec{j}}( {\varvec{r}} )=\left( \hbar /m \right) p( {\varvec{r}} )\nabla \phi \left( {\varvec{r}} \right) $$ distributions, respectively, are reexamined. The components of the overall entropy, S[φ]≡-∫p(r)[lnp(r)+2ϕ(r)]dr≡S[p]+S[ϕ],$$\begin{aligned} S[\varphi ]\equiv -\int {p({\varvec{r}})[\ln p({\varvec{r}})+ 2\phi ( {\varvec{r}} )] \,d{\varvec{r}}\equiv S[p]+S[\phi ]}, \end{aligned}$$are shown to determine the real and imaginary parts of the state complex Shannon entropy, H[φ]≡-2φ|lnφ|φ=Sp+iS[ϕ],$$\begin{aligned} H[\varphi ]\equiv -2\left\langle {\varphi |\ln \varphi |\varphi } \right\rangle =S\left[ p \right] +\hbox {i}S[\phi ], \end{aligned}$$a natural quantum-amplitude generalization of the classical Shannon entropy. Its contributions are related to the associated terms in the state resultant Fisher information, I[φ]≡-4⟨φ|∇2|φ⟩≡∫p(r){[∇lnp(r)]2+[2∇ϕr]2}dr≡I[p]+I[ϕ]=I[p]+∫p(r)[(2m/ħ)j(r)/p(r)]2dr≡I[p]+I[j],$$\begin{aligned} I[\varphi ]\equiv & {} -4\langle {\varphi |\nabla ^{2}|\varphi } \rangle \equiv \int {p({\varvec{r}})\{[} \nabla \ln p({\varvec{r}})]^{2}+[2\nabla \phi \left( {\varvec{r}} \right) ]^{2}\}\,d{\varvec{r}}\equiv I[p]+I[\phi ] \\= & {} I[p]+\int {p({\varvec{r}})[(2m/\hbar ){\varvec{j}}({\varvec{r}})/p({\varvec{r}})]^{2}\,d{\varvec{r}}\equiv I[p]+I[{\varvec{j}}],} \\ \end{aligned}$$and the gradient entropy: I~[φ]≡⟨φ|[(∇lnp)2+(i2∇ϕ)2]|φ⟩=I[p]-I[ϕ]=I~[p]+I~[ϕ].$$\begin{aligned} \tilde{I}[\varphi ]\equiv \langle {\varphi |[(\nabla \ln p)^{2}+(\hbox {i}2\nabla \phi )^{2}]|\varphi } \rangle =I[p]-I[\phi ]=\tilde{I}[p]+\tilde{I}[\phi ]. \end{aligned}$$ Complex entropy Fisher information Information theory Nonclassical information Resultant information measures Shannon entropy Enthalten in Journal of mathematical chemistry Springer International Publishing, 1987 54(2016), 9 vom: 06. Juni, Seite 1777-1782 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:54 year:2016 number:9 day:06 month:06 pages:1777-1782 https://doi.org/10.1007/s10910-016-0651-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 AR 54 2016 9 06 06 1777-1782 |
spelling |
10.1007/s10910-016-0651-6 doi (DE-627)OLC206042271X (DE-He213)s10910-016-0651-6-p DE-627 ger DE-627 rakwb eng 510 540 VZ Nalewajski, Roman F. verfasserin aut Complex entropy and resultant information measures 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2016 Abstract Classical and nonclassical contributions to Author’s resultant Shannon- and Fisher-type measures of the information content in general electronic state $$\varphi ( {\varvec{r}} ) =R( {\varvec{r}}) \hbox { exp}[\hbox {i}\phi ( {\varvec{r}} )]$$, due to the state probability density $$p( {\varvec{r}} ) =R( {\varvec{r}} )^{2}$$ and its phase $$\phi ( {\varvec{r}} )$$ or current $${\varvec{j}}( {\varvec{r}} )=\left( \hbar /m \right) p( {\varvec{r}} )\nabla \phi \left( {\varvec{r}} \right) $$ distributions, respectively, are reexamined. The components of the overall entropy, S[φ]≡-∫p(r)[lnp(r)+2ϕ(r)]dr≡S[p]+S[ϕ],$$\begin{aligned} S[\varphi ]\equiv -\int {p({\varvec{r}})[\ln p({\varvec{r}})+ 2\phi ( {\varvec{r}} )] \,d{\varvec{r}}\equiv S[p]+S[\phi ]}, \end{aligned}$$are shown to determine the real and imaginary parts of the state complex Shannon entropy, H[φ]≡-2φ|lnφ|φ=Sp+iS[ϕ],$$\begin{aligned} H[\varphi ]\equiv -2\left\langle {\varphi |\ln \varphi |\varphi } \right\rangle =S\left[ p \right] +\hbox {i}S[\phi ], \end{aligned}$$a natural quantum-amplitude generalization of the classical Shannon entropy. Its contributions are related to the associated terms in the state resultant Fisher information, I[φ]≡-4⟨φ|∇2|φ⟩≡∫p(r){[∇lnp(r)]2+[2∇ϕr]2}dr≡I[p]+I[ϕ]=I[p]+∫p(r)[(2m/ħ)j(r)/p(r)]2dr≡I[p]+I[j],$$\begin{aligned} I[\varphi ]\equiv & {} -4\langle {\varphi |\nabla ^{2}|\varphi } \rangle \equiv \int {p({\varvec{r}})\{[} \nabla \ln p({\varvec{r}})]^{2}+[2\nabla \phi \left( {\varvec{r}} \right) ]^{2}\}\,d{\varvec{r}}\equiv I[p]+I[\phi ] \\= & {} I[p]+\int {p({\varvec{r}})[(2m/\hbar ){\varvec{j}}({\varvec{r}})/p({\varvec{r}})]^{2}\,d{\varvec{r}}\equiv I[p]+I[{\varvec{j}}],} \\ \end{aligned}$$and the gradient entropy: I~[φ]≡⟨φ|[(∇lnp)2+(i2∇ϕ)2]|φ⟩=I[p]-I[ϕ]=I~[p]+I~[ϕ].$$\begin{aligned} \tilde{I}[\varphi ]\equiv \langle {\varphi |[(\nabla \ln p)^{2}+(\hbox {i}2\nabla \phi )^{2}]|\varphi } \rangle =I[p]-I[\phi ]=\tilde{I}[p]+\tilde{I}[\phi ]. \end{aligned}$$ Complex entropy Fisher information Information theory Nonclassical information Resultant information measures Shannon entropy Enthalten in Journal of mathematical chemistry Springer International Publishing, 1987 54(2016), 9 vom: 06. Juni, Seite 1777-1782 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:54 year:2016 number:9 day:06 month:06 pages:1777-1782 https://doi.org/10.1007/s10910-016-0651-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 AR 54 2016 9 06 06 1777-1782 |
allfields_unstemmed |
10.1007/s10910-016-0651-6 doi (DE-627)OLC206042271X (DE-He213)s10910-016-0651-6-p DE-627 ger DE-627 rakwb eng 510 540 VZ Nalewajski, Roman F. verfasserin aut Complex entropy and resultant information measures 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2016 Abstract Classical and nonclassical contributions to Author’s resultant Shannon- and Fisher-type measures of the information content in general electronic state $$\varphi ( {\varvec{r}} ) =R( {\varvec{r}}) \hbox { exp}[\hbox {i}\phi ( {\varvec{r}} )]$$, due to the state probability density $$p( {\varvec{r}} ) =R( {\varvec{r}} )^{2}$$ and its phase $$\phi ( {\varvec{r}} )$$ or current $${\varvec{j}}( {\varvec{r}} )=\left( \hbar /m \right) p( {\varvec{r}} )\nabla \phi \left( {\varvec{r}} \right) $$ distributions, respectively, are reexamined. The components of the overall entropy, S[φ]≡-∫p(r)[lnp(r)+2ϕ(r)]dr≡S[p]+S[ϕ],$$\begin{aligned} S[\varphi ]\equiv -\int {p({\varvec{r}})[\ln p({\varvec{r}})+ 2\phi ( {\varvec{r}} )] \,d{\varvec{r}}\equiv S[p]+S[\phi ]}, \end{aligned}$$are shown to determine the real and imaginary parts of the state complex Shannon entropy, H[φ]≡-2φ|lnφ|φ=Sp+iS[ϕ],$$\begin{aligned} H[\varphi ]\equiv -2\left\langle {\varphi |\ln \varphi |\varphi } \right\rangle =S\left[ p \right] +\hbox {i}S[\phi ], \end{aligned}$$a natural quantum-amplitude generalization of the classical Shannon entropy. Its contributions are related to the associated terms in the state resultant Fisher information, I[φ]≡-4⟨φ|∇2|φ⟩≡∫p(r){[∇lnp(r)]2+[2∇ϕr]2}dr≡I[p]+I[ϕ]=I[p]+∫p(r)[(2m/ħ)j(r)/p(r)]2dr≡I[p]+I[j],$$\begin{aligned} I[\varphi ]\equiv & {} -4\langle {\varphi |\nabla ^{2}|\varphi } \rangle \equiv \int {p({\varvec{r}})\{[} \nabla \ln p({\varvec{r}})]^{2}+[2\nabla \phi \left( {\varvec{r}} \right) ]^{2}\}\,d{\varvec{r}}\equiv I[p]+I[\phi ] \\= & {} I[p]+\int {p({\varvec{r}})[(2m/\hbar ){\varvec{j}}({\varvec{r}})/p({\varvec{r}})]^{2}\,d{\varvec{r}}\equiv I[p]+I[{\varvec{j}}],} \\ \end{aligned}$$and the gradient entropy: I~[φ]≡⟨φ|[(∇lnp)2+(i2∇ϕ)2]|φ⟩=I[p]-I[ϕ]=I~[p]+I~[ϕ].$$\begin{aligned} \tilde{I}[\varphi ]\equiv \langle {\varphi |[(\nabla \ln p)^{2}+(\hbox {i}2\nabla \phi )^{2}]|\varphi } \rangle =I[p]-I[\phi ]=\tilde{I}[p]+\tilde{I}[\phi ]. \end{aligned}$$ Complex entropy Fisher information Information theory Nonclassical information Resultant information measures Shannon entropy Enthalten in Journal of mathematical chemistry Springer International Publishing, 1987 54(2016), 9 vom: 06. Juni, Seite 1777-1782 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:54 year:2016 number:9 day:06 month:06 pages:1777-1782 https://doi.org/10.1007/s10910-016-0651-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 AR 54 2016 9 06 06 1777-1782 |
allfieldsGer |
10.1007/s10910-016-0651-6 doi (DE-627)OLC206042271X (DE-He213)s10910-016-0651-6-p DE-627 ger DE-627 rakwb eng 510 540 VZ Nalewajski, Roman F. verfasserin aut Complex entropy and resultant information measures 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2016 Abstract Classical and nonclassical contributions to Author’s resultant Shannon- and Fisher-type measures of the information content in general electronic state $$\varphi ( {\varvec{r}} ) =R( {\varvec{r}}) \hbox { exp}[\hbox {i}\phi ( {\varvec{r}} )]$$, due to the state probability density $$p( {\varvec{r}} ) =R( {\varvec{r}} )^{2}$$ and its phase $$\phi ( {\varvec{r}} )$$ or current $${\varvec{j}}( {\varvec{r}} )=\left( \hbar /m \right) p( {\varvec{r}} )\nabla \phi \left( {\varvec{r}} \right) $$ distributions, respectively, are reexamined. The components of the overall entropy, S[φ]≡-∫p(r)[lnp(r)+2ϕ(r)]dr≡S[p]+S[ϕ],$$\begin{aligned} S[\varphi ]\equiv -\int {p({\varvec{r}})[\ln p({\varvec{r}})+ 2\phi ( {\varvec{r}} )] \,d{\varvec{r}}\equiv S[p]+S[\phi ]}, \end{aligned}$$are shown to determine the real and imaginary parts of the state complex Shannon entropy, H[φ]≡-2φ|lnφ|φ=Sp+iS[ϕ],$$\begin{aligned} H[\varphi ]\equiv -2\left\langle {\varphi |\ln \varphi |\varphi } \right\rangle =S\left[ p \right] +\hbox {i}S[\phi ], \end{aligned}$$a natural quantum-amplitude generalization of the classical Shannon entropy. Its contributions are related to the associated terms in the state resultant Fisher information, I[φ]≡-4⟨φ|∇2|φ⟩≡∫p(r){[∇lnp(r)]2+[2∇ϕr]2}dr≡I[p]+I[ϕ]=I[p]+∫p(r)[(2m/ħ)j(r)/p(r)]2dr≡I[p]+I[j],$$\begin{aligned} I[\varphi ]\equiv & {} -4\langle {\varphi |\nabla ^{2}|\varphi } \rangle \equiv \int {p({\varvec{r}})\{[} \nabla \ln p({\varvec{r}})]^{2}+[2\nabla \phi \left( {\varvec{r}} \right) ]^{2}\}\,d{\varvec{r}}\equiv I[p]+I[\phi ] \\= & {} I[p]+\int {p({\varvec{r}})[(2m/\hbar ){\varvec{j}}({\varvec{r}})/p({\varvec{r}})]^{2}\,d{\varvec{r}}\equiv I[p]+I[{\varvec{j}}],} \\ \end{aligned}$$and the gradient entropy: I~[φ]≡⟨φ|[(∇lnp)2+(i2∇ϕ)2]|φ⟩=I[p]-I[ϕ]=I~[p]+I~[ϕ].$$\begin{aligned} \tilde{I}[\varphi ]\equiv \langle {\varphi |[(\nabla \ln p)^{2}+(\hbox {i}2\nabla \phi )^{2}]|\varphi } \rangle =I[p]-I[\phi ]=\tilde{I}[p]+\tilde{I}[\phi ]. \end{aligned}$$ Complex entropy Fisher information Information theory Nonclassical information Resultant information measures Shannon entropy Enthalten in Journal of mathematical chemistry Springer International Publishing, 1987 54(2016), 9 vom: 06. Juni, Seite 1777-1782 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:54 year:2016 number:9 day:06 month:06 pages:1777-1782 https://doi.org/10.1007/s10910-016-0651-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 AR 54 2016 9 06 06 1777-1782 |
allfieldsSound |
10.1007/s10910-016-0651-6 doi (DE-627)OLC206042271X (DE-He213)s10910-016-0651-6-p DE-627 ger DE-627 rakwb eng 510 540 VZ Nalewajski, Roman F. verfasserin aut Complex entropy and resultant information measures 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2016 Abstract Classical and nonclassical contributions to Author’s resultant Shannon- and Fisher-type measures of the information content in general electronic state $$\varphi ( {\varvec{r}} ) =R( {\varvec{r}}) \hbox { exp}[\hbox {i}\phi ( {\varvec{r}} )]$$, due to the state probability density $$p( {\varvec{r}} ) =R( {\varvec{r}} )^{2}$$ and its phase $$\phi ( {\varvec{r}} )$$ or current $${\varvec{j}}( {\varvec{r}} )=\left( \hbar /m \right) p( {\varvec{r}} )\nabla \phi \left( {\varvec{r}} \right) $$ distributions, respectively, are reexamined. The components of the overall entropy, S[φ]≡-∫p(r)[lnp(r)+2ϕ(r)]dr≡S[p]+S[ϕ],$$\begin{aligned} S[\varphi ]\equiv -\int {p({\varvec{r}})[\ln p({\varvec{r}})+ 2\phi ( {\varvec{r}} )] \,d{\varvec{r}}\equiv S[p]+S[\phi ]}, \end{aligned}$$are shown to determine the real and imaginary parts of the state complex Shannon entropy, H[φ]≡-2φ|lnφ|φ=Sp+iS[ϕ],$$\begin{aligned} H[\varphi ]\equiv -2\left\langle {\varphi |\ln \varphi |\varphi } \right\rangle =S\left[ p \right] +\hbox {i}S[\phi ], \end{aligned}$$a natural quantum-amplitude generalization of the classical Shannon entropy. Its contributions are related to the associated terms in the state resultant Fisher information, I[φ]≡-4⟨φ|∇2|φ⟩≡∫p(r){[∇lnp(r)]2+[2∇ϕr]2}dr≡I[p]+I[ϕ]=I[p]+∫p(r)[(2m/ħ)j(r)/p(r)]2dr≡I[p]+I[j],$$\begin{aligned} I[\varphi ]\equiv & {} -4\langle {\varphi |\nabla ^{2}|\varphi } \rangle \equiv \int {p({\varvec{r}})\{[} \nabla \ln p({\varvec{r}})]^{2}+[2\nabla \phi \left( {\varvec{r}} \right) ]^{2}\}\,d{\varvec{r}}\equiv I[p]+I[\phi ] \\= & {} I[p]+\int {p({\varvec{r}})[(2m/\hbar ){\varvec{j}}({\varvec{r}})/p({\varvec{r}})]^{2}\,d{\varvec{r}}\equiv I[p]+I[{\varvec{j}}],} \\ \end{aligned}$$and the gradient entropy: I~[φ]≡⟨φ|[(∇lnp)2+(i2∇ϕ)2]|φ⟩=I[p]-I[ϕ]=I~[p]+I~[ϕ].$$\begin{aligned} \tilde{I}[\varphi ]\equiv \langle {\varphi |[(\nabla \ln p)^{2}+(\hbox {i}2\nabla \phi )^{2}]|\varphi } \rangle =I[p]-I[\phi ]=\tilde{I}[p]+\tilde{I}[\phi ]. \end{aligned}$$ Complex entropy Fisher information Information theory Nonclassical information Resultant information measures Shannon entropy Enthalten in Journal of mathematical chemistry Springer International Publishing, 1987 54(2016), 9 vom: 06. Juni, Seite 1777-1782 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:54 year:2016 number:9 day:06 month:06 pages:1777-1782 https://doi.org/10.1007/s10910-016-0651-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 AR 54 2016 9 06 06 1777-1782 |
language |
English |
source |
Enthalten in Journal of mathematical chemistry 54(2016), 9 vom: 06. Juni, Seite 1777-1782 volume:54 year:2016 number:9 day:06 month:06 pages:1777-1782 |
sourceStr |
Enthalten in Journal of mathematical chemistry 54(2016), 9 vom: 06. Juni, Seite 1777-1782 volume:54 year:2016 number:9 day:06 month:06 pages:1777-1782 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Complex entropy Fisher information Information theory Nonclassical information Resultant information measures Shannon entropy |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of mathematical chemistry |
authorswithroles_txt_mv |
Nalewajski, Roman F. @@aut@@ |
publishDateDaySort_date |
2016-06-06T00:00:00Z |
hierarchy_top_id |
129246441 |
dewey-sort |
3510 |
id |
OLC206042271X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206042271X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230518172320.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10910-016-0651-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206042271X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10910-016-0651-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nalewajski, Roman F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex entropy and resultant information measures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Classical and nonclassical contributions to Author’s resultant Shannon- and Fisher-type measures of the information content in general electronic state $$\varphi ( {\varvec{r}} ) =R( {\varvec{r}}) \hbox { exp}[\hbox {i}\phi ( {\varvec{r}} )]$$, due to the state probability density $$p( {\varvec{r}} ) =R( {\varvec{r}} )^{2}$$ and its phase $$\phi ( {\varvec{r}} )$$ or current $${\varvec{j}}( {\varvec{r}} )=\left( \hbar /m \right) p( {\varvec{r}} )\nabla \phi \left( {\varvec{r}} \right) $$ distributions, respectively, are reexamined. The components of the overall entropy, S[φ]≡-∫p(r)[lnp(r)+2ϕ(r)]dr≡S[p]+S[ϕ],$$\begin{aligned} S[\varphi ]\equiv -\int {p({\varvec{r}})[\ln p({\varvec{r}})+ 2\phi ( {\varvec{r}} )] \,d{\varvec{r}}\equiv S[p]+S[\phi ]}, \end{aligned}$$are shown to determine the real and imaginary parts of the state complex Shannon entropy, H[φ]≡-2φ|lnφ|φ=Sp+iS[ϕ],$$\begin{aligned} H[\varphi ]\equiv -2\left\langle {\varphi |\ln \varphi |\varphi } \right\rangle =S\left[ p \right] +\hbox {i}S[\phi ], \end{aligned}$$a natural quantum-amplitude generalization of the classical Shannon entropy. Its contributions are related to the associated terms in the state resultant Fisher information, I[φ]≡-4⟨φ|∇2|φ⟩≡∫p(r){[∇lnp(r)]2+[2∇ϕr]2}dr≡I[p]+I[ϕ]=I[p]+∫p(r)[(2m/ħ)j(r)/p(r)]2dr≡I[p]+I[j],$$\begin{aligned} I[\varphi ]\equiv & {} -4\langle {\varphi |\nabla ^{2}|\varphi } \rangle \equiv \int {p({\varvec{r}})\{[} \nabla \ln p({\varvec{r}})]^{2}+[2\nabla \phi \left( {\varvec{r}} \right) ]^{2}\}\,d{\varvec{r}}\equiv I[p]+I[\phi ] \\= & {} I[p]+\int {p({\varvec{r}})[(2m/\hbar ){\varvec{j}}({\varvec{r}})/p({\varvec{r}})]^{2}\,d{\varvec{r}}\equiv I[p]+I[{\varvec{j}}],} \\ \end{aligned}$$and the gradient entropy: I~[φ]≡⟨φ|[(∇lnp)2+(i2∇ϕ)2]|φ⟩=I[p]-I[ϕ]=I~[p]+I~[ϕ].$$\begin{aligned} \tilde{I}[\varphi ]\equiv \langle {\varphi |[(\nabla \ln p)^{2}+(\hbox {i}2\nabla \phi )^{2}]|\varphi } \rangle =I[p]-I[\phi ]=\tilde{I}[p]+\tilde{I}[\phi ]. \end{aligned}$$</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fisher information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonclassical information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resultant information measures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shannon entropy</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical chemistry</subfield><subfield code="d">Springer International Publishing, 1987</subfield><subfield code="g">54(2016), 9 vom: 06. Juni, Seite 1777-1782</subfield><subfield code="w">(DE-627)129246441</subfield><subfield code="w">(DE-600)59132-4</subfield><subfield code="w">(DE-576)27906036X</subfield><subfield code="x">0259-9791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:9</subfield><subfield code="g">day:06</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1777-1782</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10910-016-0651-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2016</subfield><subfield code="e">9</subfield><subfield code="b">06</subfield><subfield code="c">06</subfield><subfield code="h">1777-1782</subfield></datafield></record></collection>
|
author |
Nalewajski, Roman F. |
spellingShingle |
Nalewajski, Roman F. ddc 510 misc Complex entropy misc Fisher information misc Information theory misc Nonclassical information misc Resultant information measures misc Shannon entropy Complex entropy and resultant information measures |
authorStr |
Nalewajski, Roman F. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129246441 |
format |
Article |
dewey-ones |
510 - Mathematics 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0259-9791 |
topic_title |
510 540 VZ Complex entropy and resultant information measures Complex entropy Fisher information Information theory Nonclassical information Resultant information measures Shannon entropy |
topic |
ddc 510 misc Complex entropy misc Fisher information misc Information theory misc Nonclassical information misc Resultant information measures misc Shannon entropy |
topic_unstemmed |
ddc 510 misc Complex entropy misc Fisher information misc Information theory misc Nonclassical information misc Resultant information measures misc Shannon entropy |
topic_browse |
ddc 510 misc Complex entropy misc Fisher information misc Information theory misc Nonclassical information misc Resultant information measures misc Shannon entropy |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of mathematical chemistry |
hierarchy_parent_id |
129246441 |
dewey-tens |
510 - Mathematics 540 - Chemistry |
hierarchy_top_title |
Journal of mathematical chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X |
title |
Complex entropy and resultant information measures |
ctrlnum |
(DE-627)OLC206042271X (DE-He213)s10910-016-0651-6-p |
title_full |
Complex entropy and resultant information measures |
author_sort |
Nalewajski, Roman F. |
journal |
Journal of mathematical chemistry |
journalStr |
Journal of mathematical chemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1777 |
author_browse |
Nalewajski, Roman F. |
container_volume |
54 |
class |
510 540 VZ |
format_se |
Aufsätze |
author-letter |
Nalewajski, Roman F. |
doi_str_mv |
10.1007/s10910-016-0651-6 |
dewey-full |
510 540 |
title_sort |
complex entropy and resultant information measures |
title_auth |
Complex entropy and resultant information measures |
abstract |
Abstract Classical and nonclassical contributions to Author’s resultant Shannon- and Fisher-type measures of the information content in general electronic state $$\varphi ( {\varvec{r}} ) =R( {\varvec{r}}) \hbox { exp}[\hbox {i}\phi ( {\varvec{r}} )]$$, due to the state probability density $$p( {\varvec{r}} ) =R( {\varvec{r}} )^{2}$$ and its phase $$\phi ( {\varvec{r}} )$$ or current $${\varvec{j}}( {\varvec{r}} )=\left( \hbar /m \right) p( {\varvec{r}} )\nabla \phi \left( {\varvec{r}} \right) $$ distributions, respectively, are reexamined. The components of the overall entropy, S[φ]≡-∫p(r)[lnp(r)+2ϕ(r)]dr≡S[p]+S[ϕ],$$\begin{aligned} S[\varphi ]\equiv -\int {p({\varvec{r}})[\ln p({\varvec{r}})+ 2\phi ( {\varvec{r}} )] \,d{\varvec{r}}\equiv S[p]+S[\phi ]}, \end{aligned}$$are shown to determine the real and imaginary parts of the state complex Shannon entropy, H[φ]≡-2φ|lnφ|φ=Sp+iS[ϕ],$$\begin{aligned} H[\varphi ]\equiv -2\left\langle {\varphi |\ln \varphi |\varphi } \right\rangle =S\left[ p \right] +\hbox {i}S[\phi ], \end{aligned}$$a natural quantum-amplitude generalization of the classical Shannon entropy. Its contributions are related to the associated terms in the state resultant Fisher information, I[φ]≡-4⟨φ|∇2|φ⟩≡∫p(r){[∇lnp(r)]2+[2∇ϕr]2}dr≡I[p]+I[ϕ]=I[p]+∫p(r)[(2m/ħ)j(r)/p(r)]2dr≡I[p]+I[j],$$\begin{aligned} I[\varphi ]\equiv & {} -4\langle {\varphi |\nabla ^{2}|\varphi } \rangle \equiv \int {p({\varvec{r}})\{[} \nabla \ln p({\varvec{r}})]^{2}+[2\nabla \phi \left( {\varvec{r}} \right) ]^{2}\}\,d{\varvec{r}}\equiv I[p]+I[\phi ] \\= & {} I[p]+\int {p({\varvec{r}})[(2m/\hbar ){\varvec{j}}({\varvec{r}})/p({\varvec{r}})]^{2}\,d{\varvec{r}}\equiv I[p]+I[{\varvec{j}}],} \\ \end{aligned}$$and the gradient entropy: I~[φ]≡⟨φ|[(∇lnp)2+(i2∇ϕ)2]|φ⟩=I[p]-I[ϕ]=I~[p]+I~[ϕ].$$\begin{aligned} \tilde{I}[\varphi ]\equiv \langle {\varphi |[(\nabla \ln p)^{2}+(\hbox {i}2\nabla \phi )^{2}]|\varphi } \rangle =I[p]-I[\phi ]=\tilde{I}[p]+\tilde{I}[\phi ]. \end{aligned}$$ © The Author(s) 2016 |
abstractGer |
Abstract Classical and nonclassical contributions to Author’s resultant Shannon- and Fisher-type measures of the information content in general electronic state $$\varphi ( {\varvec{r}} ) =R( {\varvec{r}}) \hbox { exp}[\hbox {i}\phi ( {\varvec{r}} )]$$, due to the state probability density $$p( {\varvec{r}} ) =R( {\varvec{r}} )^{2}$$ and its phase $$\phi ( {\varvec{r}} )$$ or current $${\varvec{j}}( {\varvec{r}} )=\left( \hbar /m \right) p( {\varvec{r}} )\nabla \phi \left( {\varvec{r}} \right) $$ distributions, respectively, are reexamined. The components of the overall entropy, S[φ]≡-∫p(r)[lnp(r)+2ϕ(r)]dr≡S[p]+S[ϕ],$$\begin{aligned} S[\varphi ]\equiv -\int {p({\varvec{r}})[\ln p({\varvec{r}})+ 2\phi ( {\varvec{r}} )] \,d{\varvec{r}}\equiv S[p]+S[\phi ]}, \end{aligned}$$are shown to determine the real and imaginary parts of the state complex Shannon entropy, H[φ]≡-2φ|lnφ|φ=Sp+iS[ϕ],$$\begin{aligned} H[\varphi ]\equiv -2\left\langle {\varphi |\ln \varphi |\varphi } \right\rangle =S\left[ p \right] +\hbox {i}S[\phi ], \end{aligned}$$a natural quantum-amplitude generalization of the classical Shannon entropy. Its contributions are related to the associated terms in the state resultant Fisher information, I[φ]≡-4⟨φ|∇2|φ⟩≡∫p(r){[∇lnp(r)]2+[2∇ϕr]2}dr≡I[p]+I[ϕ]=I[p]+∫p(r)[(2m/ħ)j(r)/p(r)]2dr≡I[p]+I[j],$$\begin{aligned} I[\varphi ]\equiv & {} -4\langle {\varphi |\nabla ^{2}|\varphi } \rangle \equiv \int {p({\varvec{r}})\{[} \nabla \ln p({\varvec{r}})]^{2}+[2\nabla \phi \left( {\varvec{r}} \right) ]^{2}\}\,d{\varvec{r}}\equiv I[p]+I[\phi ] \\= & {} I[p]+\int {p({\varvec{r}})[(2m/\hbar ){\varvec{j}}({\varvec{r}})/p({\varvec{r}})]^{2}\,d{\varvec{r}}\equiv I[p]+I[{\varvec{j}}],} \\ \end{aligned}$$and the gradient entropy: I~[φ]≡⟨φ|[(∇lnp)2+(i2∇ϕ)2]|φ⟩=I[p]-I[ϕ]=I~[p]+I~[ϕ].$$\begin{aligned} \tilde{I}[\varphi ]\equiv \langle {\varphi |[(\nabla \ln p)^{2}+(\hbox {i}2\nabla \phi )^{2}]|\varphi } \rangle =I[p]-I[\phi ]=\tilde{I}[p]+\tilde{I}[\phi ]. \end{aligned}$$ © The Author(s) 2016 |
abstract_unstemmed |
Abstract Classical and nonclassical contributions to Author’s resultant Shannon- and Fisher-type measures of the information content in general electronic state $$\varphi ( {\varvec{r}} ) =R( {\varvec{r}}) \hbox { exp}[\hbox {i}\phi ( {\varvec{r}} )]$$, due to the state probability density $$p( {\varvec{r}} ) =R( {\varvec{r}} )^{2}$$ and its phase $$\phi ( {\varvec{r}} )$$ or current $${\varvec{j}}( {\varvec{r}} )=\left( \hbar /m \right) p( {\varvec{r}} )\nabla \phi \left( {\varvec{r}} \right) $$ distributions, respectively, are reexamined. The components of the overall entropy, S[φ]≡-∫p(r)[lnp(r)+2ϕ(r)]dr≡S[p]+S[ϕ],$$\begin{aligned} S[\varphi ]\equiv -\int {p({\varvec{r}})[\ln p({\varvec{r}})+ 2\phi ( {\varvec{r}} )] \,d{\varvec{r}}\equiv S[p]+S[\phi ]}, \end{aligned}$$are shown to determine the real and imaginary parts of the state complex Shannon entropy, H[φ]≡-2φ|lnφ|φ=Sp+iS[ϕ],$$\begin{aligned} H[\varphi ]\equiv -2\left\langle {\varphi |\ln \varphi |\varphi } \right\rangle =S\left[ p \right] +\hbox {i}S[\phi ], \end{aligned}$$a natural quantum-amplitude generalization of the classical Shannon entropy. Its contributions are related to the associated terms in the state resultant Fisher information, I[φ]≡-4⟨φ|∇2|φ⟩≡∫p(r){[∇lnp(r)]2+[2∇ϕr]2}dr≡I[p]+I[ϕ]=I[p]+∫p(r)[(2m/ħ)j(r)/p(r)]2dr≡I[p]+I[j],$$\begin{aligned} I[\varphi ]\equiv & {} -4\langle {\varphi |\nabla ^{2}|\varphi } \rangle \equiv \int {p({\varvec{r}})\{[} \nabla \ln p({\varvec{r}})]^{2}+[2\nabla \phi \left( {\varvec{r}} \right) ]^{2}\}\,d{\varvec{r}}\equiv I[p]+I[\phi ] \\= & {} I[p]+\int {p({\varvec{r}})[(2m/\hbar ){\varvec{j}}({\varvec{r}})/p({\varvec{r}})]^{2}\,d{\varvec{r}}\equiv I[p]+I[{\varvec{j}}],} \\ \end{aligned}$$and the gradient entropy: I~[φ]≡⟨φ|[(∇lnp)2+(i2∇ϕ)2]|φ⟩=I[p]-I[ϕ]=I~[p]+I~[ϕ].$$\begin{aligned} \tilde{I}[\varphi ]\equiv \langle {\varphi |[(\nabla \ln p)^{2}+(\hbox {i}2\nabla \phi )^{2}]|\varphi } \rangle =I[p]-I[\phi ]=\tilde{I}[p]+\tilde{I}[\phi ]. \end{aligned}$$ © The Author(s) 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 |
container_issue |
9 |
title_short |
Complex entropy and resultant information measures |
url |
https://doi.org/10.1007/s10910-016-0651-6 |
remote_bool |
false |
ppnlink |
129246441 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10910-016-0651-6 |
up_date |
2024-07-04T01:18:25.330Z |
_version_ |
1803609340989407232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206042271X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230518172320.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10910-016-0651-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206042271X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10910-016-0651-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nalewajski, Roman F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex entropy and resultant information measures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Classical and nonclassical contributions to Author’s resultant Shannon- and Fisher-type measures of the information content in general electronic state $$\varphi ( {\varvec{r}} ) =R( {\varvec{r}}) \hbox { exp}[\hbox {i}\phi ( {\varvec{r}} )]$$, due to the state probability density $$p( {\varvec{r}} ) =R( {\varvec{r}} )^{2}$$ and its phase $$\phi ( {\varvec{r}} )$$ or current $${\varvec{j}}( {\varvec{r}} )=\left( \hbar /m \right) p( {\varvec{r}} )\nabla \phi \left( {\varvec{r}} \right) $$ distributions, respectively, are reexamined. The components of the overall entropy, S[φ]≡-∫p(r)[lnp(r)+2ϕ(r)]dr≡S[p]+S[ϕ],$$\begin{aligned} S[\varphi ]\equiv -\int {p({\varvec{r}})[\ln p({\varvec{r}})+ 2\phi ( {\varvec{r}} )] \,d{\varvec{r}}\equiv S[p]+S[\phi ]}, \end{aligned}$$are shown to determine the real and imaginary parts of the state complex Shannon entropy, H[φ]≡-2φ|lnφ|φ=Sp+iS[ϕ],$$\begin{aligned} H[\varphi ]\equiv -2\left\langle {\varphi |\ln \varphi |\varphi } \right\rangle =S\left[ p \right] +\hbox {i}S[\phi ], \end{aligned}$$a natural quantum-amplitude generalization of the classical Shannon entropy. Its contributions are related to the associated terms in the state resultant Fisher information, I[φ]≡-4⟨φ|∇2|φ⟩≡∫p(r){[∇lnp(r)]2+[2∇ϕr]2}dr≡I[p]+I[ϕ]=I[p]+∫p(r)[(2m/ħ)j(r)/p(r)]2dr≡I[p]+I[j],$$\begin{aligned} I[\varphi ]\equiv & {} -4\langle {\varphi |\nabla ^{2}|\varphi } \rangle \equiv \int {p({\varvec{r}})\{[} \nabla \ln p({\varvec{r}})]^{2}+[2\nabla \phi \left( {\varvec{r}} \right) ]^{2}\}\,d{\varvec{r}}\equiv I[p]+I[\phi ] \\= & {} I[p]+\int {p({\varvec{r}})[(2m/\hbar ){\varvec{j}}({\varvec{r}})/p({\varvec{r}})]^{2}\,d{\varvec{r}}\equiv I[p]+I[{\varvec{j}}],} \\ \end{aligned}$$and the gradient entropy: I~[φ]≡⟨φ|[(∇lnp)2+(i2∇ϕ)2]|φ⟩=I[p]-I[ϕ]=I~[p]+I~[ϕ].$$\begin{aligned} \tilde{I}[\varphi ]\equiv \langle {\varphi |[(\nabla \ln p)^{2}+(\hbox {i}2\nabla \phi )^{2}]|\varphi } \rangle =I[p]-I[\phi ]=\tilde{I}[p]+\tilde{I}[\phi ]. \end{aligned}$$</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fisher information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonclassical information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resultant information measures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shannon entropy</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical chemistry</subfield><subfield code="d">Springer International Publishing, 1987</subfield><subfield code="g">54(2016), 9 vom: 06. Juni, Seite 1777-1782</subfield><subfield code="w">(DE-627)129246441</subfield><subfield code="w">(DE-600)59132-4</subfield><subfield code="w">(DE-576)27906036X</subfield><subfield code="x">0259-9791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:9</subfield><subfield code="g">day:06</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1777-1782</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10910-016-0651-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2016</subfield><subfield code="e">9</subfield><subfield code="b">06</subfield><subfield code="c">06</subfield><subfield code="h">1777-1782</subfield></datafield></record></collection>
|
score |
7.40125 |