Pfaffian polyominos on the Klein bottle
Abstract If a graph G is Pfaffian, then the number of perfect matchings of G can be computed in polynomial time. So it makes sense to test whether a graph is Pfaffian. Historically in organic chemistry and combinatorial mathematics, polyominos have attracted the most attention. In this paper, we cha...
Ausführliche Beschreibung
Autor*in: |
Wang, Yan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Nature Switzerland AG 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of mathematical chemistry - Springer International Publishing, 1987, 56(2018), 10 vom: 26. Juli, Seite 3147-3160 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2018 ; number:10 ; day:26 ; month:07 ; pages:3147-3160 |
Links: |
---|
DOI / URN: |
10.1007/s10910-018-0938-x |
---|
Katalog-ID: |
OLC2060425425 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2060425425 | ||
003 | DE-627 | ||
005 | 20230518172326.0 | ||
007 | tu | ||
008 | 200819s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10910-018-0938-x |2 doi | |
035 | |a (DE-627)OLC2060425425 | ||
035 | |a (DE-He213)s10910-018-0938-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 540 |q VZ |
100 | 1 | |a Wang, Yan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Pfaffian polyominos on the Klein bottle |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Nature Switzerland AG 2018 | ||
520 | |a Abstract If a graph G is Pfaffian, then the number of perfect matchings of G can be computed in polynomial time. So it makes sense to test whether a graph is Pfaffian. Historically in organic chemistry and combinatorial mathematics, polyominos have attracted the most attention. In this paper, we characterize all Pfaffian polyominos on the Klein bottle. | ||
650 | 4 | |a Pfaffian graph | |
650 | 4 | |a Polyomino | |
650 | 4 | |a Crossing number | |
650 | 4 | |a Marking | |
773 | 0 | 8 | |i Enthalten in |t Journal of mathematical chemistry |d Springer International Publishing, 1987 |g 56(2018), 10 vom: 26. Juli, Seite 3147-3160 |w (DE-627)129246441 |w (DE-600)59132-4 |w (DE-576)27906036X |x 0259-9791 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2018 |g number:10 |g day:26 |g month:07 |g pages:3147-3160 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10910-018-0938-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4012 | ||
951 | |a AR | ||
952 | |d 56 |j 2018 |e 10 |b 26 |c 07 |h 3147-3160 |
author_variant |
y w yw |
---|---|
matchkey_str |
article:02599791:2018----::ffinoymnsnhk |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s10910-018-0938-x doi (DE-627)OLC2060425425 (DE-He213)s10910-018-0938-x-p DE-627 ger DE-627 rakwb eng 510 540 VZ Wang, Yan verfasserin aut Pfaffian polyominos on the Klein bottle 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature Switzerland AG 2018 Abstract If a graph G is Pfaffian, then the number of perfect matchings of G can be computed in polynomial time. So it makes sense to test whether a graph is Pfaffian. Historically in organic chemistry and combinatorial mathematics, polyominos have attracted the most attention. In this paper, we characterize all Pfaffian polyominos on the Klein bottle. Pfaffian graph Polyomino Crossing number Marking Enthalten in Journal of mathematical chemistry Springer International Publishing, 1987 56(2018), 10 vom: 26. Juli, Seite 3147-3160 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:56 year:2018 number:10 day:26 month:07 pages:3147-3160 https://doi.org/10.1007/s10910-018-0938-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 AR 56 2018 10 26 07 3147-3160 |
spelling |
10.1007/s10910-018-0938-x doi (DE-627)OLC2060425425 (DE-He213)s10910-018-0938-x-p DE-627 ger DE-627 rakwb eng 510 540 VZ Wang, Yan verfasserin aut Pfaffian polyominos on the Klein bottle 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature Switzerland AG 2018 Abstract If a graph G is Pfaffian, then the number of perfect matchings of G can be computed in polynomial time. So it makes sense to test whether a graph is Pfaffian. Historically in organic chemistry and combinatorial mathematics, polyominos have attracted the most attention. In this paper, we characterize all Pfaffian polyominos on the Klein bottle. Pfaffian graph Polyomino Crossing number Marking Enthalten in Journal of mathematical chemistry Springer International Publishing, 1987 56(2018), 10 vom: 26. Juli, Seite 3147-3160 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:56 year:2018 number:10 day:26 month:07 pages:3147-3160 https://doi.org/10.1007/s10910-018-0938-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 AR 56 2018 10 26 07 3147-3160 |
allfields_unstemmed |
10.1007/s10910-018-0938-x doi (DE-627)OLC2060425425 (DE-He213)s10910-018-0938-x-p DE-627 ger DE-627 rakwb eng 510 540 VZ Wang, Yan verfasserin aut Pfaffian polyominos on the Klein bottle 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature Switzerland AG 2018 Abstract If a graph G is Pfaffian, then the number of perfect matchings of G can be computed in polynomial time. So it makes sense to test whether a graph is Pfaffian. Historically in organic chemistry and combinatorial mathematics, polyominos have attracted the most attention. In this paper, we characterize all Pfaffian polyominos on the Klein bottle. Pfaffian graph Polyomino Crossing number Marking Enthalten in Journal of mathematical chemistry Springer International Publishing, 1987 56(2018), 10 vom: 26. Juli, Seite 3147-3160 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:56 year:2018 number:10 day:26 month:07 pages:3147-3160 https://doi.org/10.1007/s10910-018-0938-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 AR 56 2018 10 26 07 3147-3160 |
allfieldsGer |
10.1007/s10910-018-0938-x doi (DE-627)OLC2060425425 (DE-He213)s10910-018-0938-x-p DE-627 ger DE-627 rakwb eng 510 540 VZ Wang, Yan verfasserin aut Pfaffian polyominos on the Klein bottle 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature Switzerland AG 2018 Abstract If a graph G is Pfaffian, then the number of perfect matchings of G can be computed in polynomial time. So it makes sense to test whether a graph is Pfaffian. Historically in organic chemistry and combinatorial mathematics, polyominos have attracted the most attention. In this paper, we characterize all Pfaffian polyominos on the Klein bottle. Pfaffian graph Polyomino Crossing number Marking Enthalten in Journal of mathematical chemistry Springer International Publishing, 1987 56(2018), 10 vom: 26. Juli, Seite 3147-3160 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:56 year:2018 number:10 day:26 month:07 pages:3147-3160 https://doi.org/10.1007/s10910-018-0938-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 AR 56 2018 10 26 07 3147-3160 |
allfieldsSound |
10.1007/s10910-018-0938-x doi (DE-627)OLC2060425425 (DE-He213)s10910-018-0938-x-p DE-627 ger DE-627 rakwb eng 510 540 VZ Wang, Yan verfasserin aut Pfaffian polyominos on the Klein bottle 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature Switzerland AG 2018 Abstract If a graph G is Pfaffian, then the number of perfect matchings of G can be computed in polynomial time. So it makes sense to test whether a graph is Pfaffian. Historically in organic chemistry and combinatorial mathematics, polyominos have attracted the most attention. In this paper, we characterize all Pfaffian polyominos on the Klein bottle. Pfaffian graph Polyomino Crossing number Marking Enthalten in Journal of mathematical chemistry Springer International Publishing, 1987 56(2018), 10 vom: 26. Juli, Seite 3147-3160 (DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X 0259-9791 nnns volume:56 year:2018 number:10 day:26 month:07 pages:3147-3160 https://doi.org/10.1007/s10910-018-0938-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 AR 56 2018 10 26 07 3147-3160 |
language |
English |
source |
Enthalten in Journal of mathematical chemistry 56(2018), 10 vom: 26. Juli, Seite 3147-3160 volume:56 year:2018 number:10 day:26 month:07 pages:3147-3160 |
sourceStr |
Enthalten in Journal of mathematical chemistry 56(2018), 10 vom: 26. Juli, Seite 3147-3160 volume:56 year:2018 number:10 day:26 month:07 pages:3147-3160 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Pfaffian graph Polyomino Crossing number Marking |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of mathematical chemistry |
authorswithroles_txt_mv |
Wang, Yan @@aut@@ |
publishDateDaySort_date |
2018-07-26T00:00:00Z |
hierarchy_top_id |
129246441 |
dewey-sort |
3510 |
id |
OLC2060425425 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060425425</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230518172326.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10910-018-0938-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060425425</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10910-018-0938-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pfaffian polyominos on the Klein bottle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature Switzerland AG 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract If a graph G is Pfaffian, then the number of perfect matchings of G can be computed in polynomial time. So it makes sense to test whether a graph is Pfaffian. Historically in organic chemistry and combinatorial mathematics, polyominos have attracted the most attention. In this paper, we characterize all Pfaffian polyominos on the Klein bottle.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pfaffian graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polyomino</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crossing number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marking</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical chemistry</subfield><subfield code="d">Springer International Publishing, 1987</subfield><subfield code="g">56(2018), 10 vom: 26. Juli, Seite 3147-3160</subfield><subfield code="w">(DE-627)129246441</subfield><subfield code="w">(DE-600)59132-4</subfield><subfield code="w">(DE-576)27906036X</subfield><subfield code="x">0259-9791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:10</subfield><subfield code="g">day:26</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:3147-3160</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10910-018-0938-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2018</subfield><subfield code="e">10</subfield><subfield code="b">26</subfield><subfield code="c">07</subfield><subfield code="h">3147-3160</subfield></datafield></record></collection>
|
author |
Wang, Yan |
spellingShingle |
Wang, Yan ddc 510 misc Pfaffian graph misc Polyomino misc Crossing number misc Marking Pfaffian polyominos on the Klein bottle |
authorStr |
Wang, Yan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129246441 |
format |
Article |
dewey-ones |
510 - Mathematics 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0259-9791 |
topic_title |
510 540 VZ Pfaffian polyominos on the Klein bottle Pfaffian graph Polyomino Crossing number Marking |
topic |
ddc 510 misc Pfaffian graph misc Polyomino misc Crossing number misc Marking |
topic_unstemmed |
ddc 510 misc Pfaffian graph misc Polyomino misc Crossing number misc Marking |
topic_browse |
ddc 510 misc Pfaffian graph misc Polyomino misc Crossing number misc Marking |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of mathematical chemistry |
hierarchy_parent_id |
129246441 |
dewey-tens |
510 - Mathematics 540 - Chemistry |
hierarchy_top_title |
Journal of mathematical chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129246441 (DE-600)59132-4 (DE-576)27906036X |
title |
Pfaffian polyominos on the Klein bottle |
ctrlnum |
(DE-627)OLC2060425425 (DE-He213)s10910-018-0938-x-p |
title_full |
Pfaffian polyominos on the Klein bottle |
author_sort |
Wang, Yan |
journal |
Journal of mathematical chemistry |
journalStr |
Journal of mathematical chemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
3147 |
author_browse |
Wang, Yan |
container_volume |
56 |
class |
510 540 VZ |
format_se |
Aufsätze |
author-letter |
Wang, Yan |
doi_str_mv |
10.1007/s10910-018-0938-x |
dewey-full |
510 540 |
title_sort |
pfaffian polyominos on the klein bottle |
title_auth |
Pfaffian polyominos on the Klein bottle |
abstract |
Abstract If a graph G is Pfaffian, then the number of perfect matchings of G can be computed in polynomial time. So it makes sense to test whether a graph is Pfaffian. Historically in organic chemistry and combinatorial mathematics, polyominos have attracted the most attention. In this paper, we characterize all Pfaffian polyominos on the Klein bottle. © Springer Nature Switzerland AG 2018 |
abstractGer |
Abstract If a graph G is Pfaffian, then the number of perfect matchings of G can be computed in polynomial time. So it makes sense to test whether a graph is Pfaffian. Historically in organic chemistry and combinatorial mathematics, polyominos have attracted the most attention. In this paper, we characterize all Pfaffian polyominos on the Klein bottle. © Springer Nature Switzerland AG 2018 |
abstract_unstemmed |
Abstract If a graph G is Pfaffian, then the number of perfect matchings of G can be computed in polynomial time. So it makes sense to test whether a graph is Pfaffian. Historically in organic chemistry and combinatorial mathematics, polyominos have attracted the most attention. In this paper, we characterize all Pfaffian polyominos on the Klein bottle. © Springer Nature Switzerland AG 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4012 |
container_issue |
10 |
title_short |
Pfaffian polyominos on the Klein bottle |
url |
https://doi.org/10.1007/s10910-018-0938-x |
remote_bool |
false |
ppnlink |
129246441 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10910-018-0938-x |
up_date |
2024-07-04T01:18:50.506Z |
_version_ |
1803609367387308032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060425425</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230518172326.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10910-018-0938-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060425425</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10910-018-0938-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pfaffian polyominos on the Klein bottle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature Switzerland AG 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract If a graph G is Pfaffian, then the number of perfect matchings of G can be computed in polynomial time. So it makes sense to test whether a graph is Pfaffian. Historically in organic chemistry and combinatorial mathematics, polyominos have attracted the most attention. In this paper, we characterize all Pfaffian polyominos on the Klein bottle.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pfaffian graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polyomino</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crossing number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marking</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical chemistry</subfield><subfield code="d">Springer International Publishing, 1987</subfield><subfield code="g">56(2018), 10 vom: 26. Juli, Seite 3147-3160</subfield><subfield code="w">(DE-627)129246441</subfield><subfield code="w">(DE-600)59132-4</subfield><subfield code="w">(DE-576)27906036X</subfield><subfield code="x">0259-9791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:10</subfield><subfield code="g">day:26</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:3147-3160</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10910-018-0938-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2018</subfield><subfield code="e">10</subfield><subfield code="b">26</subfield><subfield code="c">07</subfield><subfield code="h">3147-3160</subfield></datafield></record></collection>
|
score |
7.4010057 |