Effect of Using Liquid Feedstock in a High Pressure Cold Spray Nozzle
Abstract This study investigates the effect of water injection in the high pressure chamber of a cold spray nozzle. A De Laval nozzle geometry with constant back pressure and temperature is modeled numerically using Reynolds Stress Model coupled equations. Water spray with a droplet size of 10-100 μ...
Ausführliche Beschreibung
Autor*in: |
Farvardin, E. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© ASM International 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of thermal spray technology - Springer US, 1992, 20(2010), 1-2 vom: 17. Nov., Seite 307-316 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2010 ; number:1-2 ; day:17 ; month:11 ; pages:307-316 |
Links: |
---|
DOI / URN: |
10.1007/s11666-010-9597-6 |
---|
Katalog-ID: |
OLC2060558980 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2060558980 | ||
003 | DE-627 | ||
005 | 20230401132710.0 | ||
007 | tu | ||
008 | 200820s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11666-010-9597-6 |2 doi | |
035 | |a (DE-627)OLC2060558980 | ||
035 | |a (DE-He213)s11666-010-9597-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Farvardin, E. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effect of Using Liquid Feedstock in a High Pressure Cold Spray Nozzle |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © ASM International 2010 | ||
520 | |a Abstract This study investigates the effect of water injection in the high pressure chamber of a cold spray nozzle. A De Laval nozzle geometry with constant back pressure and temperature is modeled numerically using Reynolds Stress Model coupled equations. Water spray with a droplet size of 10-100 μm is modeled using both uniform and Rosin-Rammler size distributions. The two-phase flow of gas-liquid is modeled using an unsteady discrete phase mass source with two-way coupling with the main gas flow. Upon injection, the droplets in the water spray evaporate while travelling through the nozzle due to momentum and energy exchange with the gas flow. The evaporation behavior in the presence of water content is modeled and a correlation between the initial diameter and the diameter just before the throat is obtained. As a result, the proper droplet size distribution with a fully evaporative spray can be used as a carrier of nano-particles in cold spray nozzles. Having the results, guides us to substitute the un-evaporated part of the droplet with an equal diameter agglomerate of nano-particles and find a minimum fraction of nano-particles suspended in the liquid which guarantees fully evaporative liquid spray injection. | ||
650 | 4 | |a cold spray process | |
650 | 4 | |a discrete phase model | |
650 | 4 | |a liquid feedstock | |
650 | 4 | |a nano-particle | |
650 | 4 | |a spray evaporation | |
650 | 4 | |a suspension | |
700 | 1 | |a Stier, O. |4 aut | |
700 | 1 | |a Lüthen, V. |4 aut | |
700 | 1 | |a Dolatabadi, A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of thermal spray technology |d Springer US, 1992 |g 20(2010), 1-2 vom: 17. Nov., Seite 307-316 |w (DE-627)131101544 |w (DE-600)1118266-0 |w (DE-576)038867699 |x 1059-9630 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2010 |g number:1-2 |g day:17 |g month:11 |g pages:307-316 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11666-010-9597-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 20 |j 2010 |e 1-2 |b 17 |c 11 |h 307-316 |
author_variant |
e f ef o s os v l vl a d ad |
---|---|
matchkey_str |
article:10599630:2010----::fetfsnlqifesoknhgpesr |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s11666-010-9597-6 doi (DE-627)OLC2060558980 (DE-He213)s11666-010-9597-6-p DE-627 ger DE-627 rakwb eng 670 VZ Farvardin, E. verfasserin aut Effect of Using Liquid Feedstock in a High Pressure Cold Spray Nozzle 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © ASM International 2010 Abstract This study investigates the effect of water injection in the high pressure chamber of a cold spray nozzle. A De Laval nozzle geometry with constant back pressure and temperature is modeled numerically using Reynolds Stress Model coupled equations. Water spray with a droplet size of 10-100 μm is modeled using both uniform and Rosin-Rammler size distributions. The two-phase flow of gas-liquid is modeled using an unsteady discrete phase mass source with two-way coupling with the main gas flow. Upon injection, the droplets in the water spray evaporate while travelling through the nozzle due to momentum and energy exchange with the gas flow. The evaporation behavior in the presence of water content is modeled and a correlation between the initial diameter and the diameter just before the throat is obtained. As a result, the proper droplet size distribution with a fully evaporative spray can be used as a carrier of nano-particles in cold spray nozzles. Having the results, guides us to substitute the un-evaporated part of the droplet with an equal diameter agglomerate of nano-particles and find a minimum fraction of nano-particles suspended in the liquid which guarantees fully evaporative liquid spray injection. cold spray process discrete phase model liquid feedstock nano-particle spray evaporation suspension Stier, O. aut Lüthen, V. aut Dolatabadi, A. aut Enthalten in Journal of thermal spray technology Springer US, 1992 20(2010), 1-2 vom: 17. Nov., Seite 307-316 (DE-627)131101544 (DE-600)1118266-0 (DE-576)038867699 1059-9630 nnns volume:20 year:2010 number:1-2 day:17 month:11 pages:307-316 https://doi.org/10.1007/s11666-010-9597-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_60 GBV_ILN_70 AR 20 2010 1-2 17 11 307-316 |
spelling |
10.1007/s11666-010-9597-6 doi (DE-627)OLC2060558980 (DE-He213)s11666-010-9597-6-p DE-627 ger DE-627 rakwb eng 670 VZ Farvardin, E. verfasserin aut Effect of Using Liquid Feedstock in a High Pressure Cold Spray Nozzle 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © ASM International 2010 Abstract This study investigates the effect of water injection in the high pressure chamber of a cold spray nozzle. A De Laval nozzle geometry with constant back pressure and temperature is modeled numerically using Reynolds Stress Model coupled equations. Water spray with a droplet size of 10-100 μm is modeled using both uniform and Rosin-Rammler size distributions. The two-phase flow of gas-liquid is modeled using an unsteady discrete phase mass source with two-way coupling with the main gas flow. Upon injection, the droplets in the water spray evaporate while travelling through the nozzle due to momentum and energy exchange with the gas flow. The evaporation behavior in the presence of water content is modeled and a correlation between the initial diameter and the diameter just before the throat is obtained. As a result, the proper droplet size distribution with a fully evaporative spray can be used as a carrier of nano-particles in cold spray nozzles. Having the results, guides us to substitute the un-evaporated part of the droplet with an equal diameter agglomerate of nano-particles and find a minimum fraction of nano-particles suspended in the liquid which guarantees fully evaporative liquid spray injection. cold spray process discrete phase model liquid feedstock nano-particle spray evaporation suspension Stier, O. aut Lüthen, V. aut Dolatabadi, A. aut Enthalten in Journal of thermal spray technology Springer US, 1992 20(2010), 1-2 vom: 17. Nov., Seite 307-316 (DE-627)131101544 (DE-600)1118266-0 (DE-576)038867699 1059-9630 nnns volume:20 year:2010 number:1-2 day:17 month:11 pages:307-316 https://doi.org/10.1007/s11666-010-9597-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_60 GBV_ILN_70 AR 20 2010 1-2 17 11 307-316 |
allfields_unstemmed |
10.1007/s11666-010-9597-6 doi (DE-627)OLC2060558980 (DE-He213)s11666-010-9597-6-p DE-627 ger DE-627 rakwb eng 670 VZ Farvardin, E. verfasserin aut Effect of Using Liquid Feedstock in a High Pressure Cold Spray Nozzle 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © ASM International 2010 Abstract This study investigates the effect of water injection in the high pressure chamber of a cold spray nozzle. A De Laval nozzle geometry with constant back pressure and temperature is modeled numerically using Reynolds Stress Model coupled equations. Water spray with a droplet size of 10-100 μm is modeled using both uniform and Rosin-Rammler size distributions. The two-phase flow of gas-liquid is modeled using an unsteady discrete phase mass source with two-way coupling with the main gas flow. Upon injection, the droplets in the water spray evaporate while travelling through the nozzle due to momentum and energy exchange with the gas flow. The evaporation behavior in the presence of water content is modeled and a correlation between the initial diameter and the diameter just before the throat is obtained. As a result, the proper droplet size distribution with a fully evaporative spray can be used as a carrier of nano-particles in cold spray nozzles. Having the results, guides us to substitute the un-evaporated part of the droplet with an equal diameter agglomerate of nano-particles and find a minimum fraction of nano-particles suspended in the liquid which guarantees fully evaporative liquid spray injection. cold spray process discrete phase model liquid feedstock nano-particle spray evaporation suspension Stier, O. aut Lüthen, V. aut Dolatabadi, A. aut Enthalten in Journal of thermal spray technology Springer US, 1992 20(2010), 1-2 vom: 17. Nov., Seite 307-316 (DE-627)131101544 (DE-600)1118266-0 (DE-576)038867699 1059-9630 nnns volume:20 year:2010 number:1-2 day:17 month:11 pages:307-316 https://doi.org/10.1007/s11666-010-9597-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_60 GBV_ILN_70 AR 20 2010 1-2 17 11 307-316 |
allfieldsGer |
10.1007/s11666-010-9597-6 doi (DE-627)OLC2060558980 (DE-He213)s11666-010-9597-6-p DE-627 ger DE-627 rakwb eng 670 VZ Farvardin, E. verfasserin aut Effect of Using Liquid Feedstock in a High Pressure Cold Spray Nozzle 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © ASM International 2010 Abstract This study investigates the effect of water injection in the high pressure chamber of a cold spray nozzle. A De Laval nozzle geometry with constant back pressure and temperature is modeled numerically using Reynolds Stress Model coupled equations. Water spray with a droplet size of 10-100 μm is modeled using both uniform and Rosin-Rammler size distributions. The two-phase flow of gas-liquid is modeled using an unsteady discrete phase mass source with two-way coupling with the main gas flow. Upon injection, the droplets in the water spray evaporate while travelling through the nozzle due to momentum and energy exchange with the gas flow. The evaporation behavior in the presence of water content is modeled and a correlation between the initial diameter and the diameter just before the throat is obtained. As a result, the proper droplet size distribution with a fully evaporative spray can be used as a carrier of nano-particles in cold spray nozzles. Having the results, guides us to substitute the un-evaporated part of the droplet with an equal diameter agglomerate of nano-particles and find a minimum fraction of nano-particles suspended in the liquid which guarantees fully evaporative liquid spray injection. cold spray process discrete phase model liquid feedstock nano-particle spray evaporation suspension Stier, O. aut Lüthen, V. aut Dolatabadi, A. aut Enthalten in Journal of thermal spray technology Springer US, 1992 20(2010), 1-2 vom: 17. Nov., Seite 307-316 (DE-627)131101544 (DE-600)1118266-0 (DE-576)038867699 1059-9630 nnns volume:20 year:2010 number:1-2 day:17 month:11 pages:307-316 https://doi.org/10.1007/s11666-010-9597-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_60 GBV_ILN_70 AR 20 2010 1-2 17 11 307-316 |
allfieldsSound |
10.1007/s11666-010-9597-6 doi (DE-627)OLC2060558980 (DE-He213)s11666-010-9597-6-p DE-627 ger DE-627 rakwb eng 670 VZ Farvardin, E. verfasserin aut Effect of Using Liquid Feedstock in a High Pressure Cold Spray Nozzle 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © ASM International 2010 Abstract This study investigates the effect of water injection in the high pressure chamber of a cold spray nozzle. A De Laval nozzle geometry with constant back pressure and temperature is modeled numerically using Reynolds Stress Model coupled equations. Water spray with a droplet size of 10-100 μm is modeled using both uniform and Rosin-Rammler size distributions. The two-phase flow of gas-liquid is modeled using an unsteady discrete phase mass source with two-way coupling with the main gas flow. Upon injection, the droplets in the water spray evaporate while travelling through the nozzle due to momentum and energy exchange with the gas flow. The evaporation behavior in the presence of water content is modeled and a correlation between the initial diameter and the diameter just before the throat is obtained. As a result, the proper droplet size distribution with a fully evaporative spray can be used as a carrier of nano-particles in cold spray nozzles. Having the results, guides us to substitute the un-evaporated part of the droplet with an equal diameter agglomerate of nano-particles and find a minimum fraction of nano-particles suspended in the liquid which guarantees fully evaporative liquid spray injection. cold spray process discrete phase model liquid feedstock nano-particle spray evaporation suspension Stier, O. aut Lüthen, V. aut Dolatabadi, A. aut Enthalten in Journal of thermal spray technology Springer US, 1992 20(2010), 1-2 vom: 17. Nov., Seite 307-316 (DE-627)131101544 (DE-600)1118266-0 (DE-576)038867699 1059-9630 nnns volume:20 year:2010 number:1-2 day:17 month:11 pages:307-316 https://doi.org/10.1007/s11666-010-9597-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_60 GBV_ILN_70 AR 20 2010 1-2 17 11 307-316 |
language |
English |
source |
Enthalten in Journal of thermal spray technology 20(2010), 1-2 vom: 17. Nov., Seite 307-316 volume:20 year:2010 number:1-2 day:17 month:11 pages:307-316 |
sourceStr |
Enthalten in Journal of thermal spray technology 20(2010), 1-2 vom: 17. Nov., Seite 307-316 volume:20 year:2010 number:1-2 day:17 month:11 pages:307-316 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
cold spray process discrete phase model liquid feedstock nano-particle spray evaporation suspension |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of thermal spray technology |
authorswithroles_txt_mv |
Farvardin, E. @@aut@@ Stier, O. @@aut@@ Lüthen, V. @@aut@@ Dolatabadi, A. @@aut@@ |
publishDateDaySort_date |
2010-11-17T00:00:00Z |
hierarchy_top_id |
131101544 |
dewey-sort |
3670 |
id |
OLC2060558980 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060558980</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401132710.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11666-010-9597-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060558980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11666-010-9597-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Farvardin, E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of Using Liquid Feedstock in a High Pressure Cold Spray Nozzle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© ASM International 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study investigates the effect of water injection in the high pressure chamber of a cold spray nozzle. A De Laval nozzle geometry with constant back pressure and temperature is modeled numerically using Reynolds Stress Model coupled equations. Water spray with a droplet size of 10-100 μm is modeled using both uniform and Rosin-Rammler size distributions. The two-phase flow of gas-liquid is modeled using an unsteady discrete phase mass source with two-way coupling with the main gas flow. Upon injection, the droplets in the water spray evaporate while travelling through the nozzle due to momentum and energy exchange with the gas flow. The evaporation behavior in the presence of water content is modeled and a correlation between the initial diameter and the diameter just before the throat is obtained. As a result, the proper droplet size distribution with a fully evaporative spray can be used as a carrier of nano-particles in cold spray nozzles. Having the results, guides us to substitute the un-evaporated part of the droplet with an equal diameter agglomerate of nano-particles and find a minimum fraction of nano-particles suspended in the liquid which guarantees fully evaporative liquid spray injection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cold spray process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete phase model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">liquid feedstock</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nano-particle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spray evaporation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">suspension</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stier, O.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lüthen, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dolatabadi, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal spray technology</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">20(2010), 1-2 vom: 17. Nov., Seite 307-316</subfield><subfield code="w">(DE-627)131101544</subfield><subfield code="w">(DE-600)1118266-0</subfield><subfield code="w">(DE-576)038867699</subfield><subfield code="x">1059-9630</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:17</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:307-316</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11666-010-9597-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2010</subfield><subfield code="e">1-2</subfield><subfield code="b">17</subfield><subfield code="c">11</subfield><subfield code="h">307-316</subfield></datafield></record></collection>
|
author |
Farvardin, E. |
spellingShingle |
Farvardin, E. ddc 670 misc cold spray process misc discrete phase model misc liquid feedstock misc nano-particle misc spray evaporation misc suspension Effect of Using Liquid Feedstock in a High Pressure Cold Spray Nozzle |
authorStr |
Farvardin, E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131101544 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1059-9630 |
topic_title |
670 VZ Effect of Using Liquid Feedstock in a High Pressure Cold Spray Nozzle cold spray process discrete phase model liquid feedstock nano-particle spray evaporation suspension |
topic |
ddc 670 misc cold spray process misc discrete phase model misc liquid feedstock misc nano-particle misc spray evaporation misc suspension |
topic_unstemmed |
ddc 670 misc cold spray process misc discrete phase model misc liquid feedstock misc nano-particle misc spray evaporation misc suspension |
topic_browse |
ddc 670 misc cold spray process misc discrete phase model misc liquid feedstock misc nano-particle misc spray evaporation misc suspension |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of thermal spray technology |
hierarchy_parent_id |
131101544 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of thermal spray technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131101544 (DE-600)1118266-0 (DE-576)038867699 |
title |
Effect of Using Liquid Feedstock in a High Pressure Cold Spray Nozzle |
ctrlnum |
(DE-627)OLC2060558980 (DE-He213)s11666-010-9597-6-p |
title_full |
Effect of Using Liquid Feedstock in a High Pressure Cold Spray Nozzle |
author_sort |
Farvardin, E. |
journal |
Journal of thermal spray technology |
journalStr |
Journal of thermal spray technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
307 |
author_browse |
Farvardin, E. Stier, O. Lüthen, V. Dolatabadi, A. |
container_volume |
20 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Farvardin, E. |
doi_str_mv |
10.1007/s11666-010-9597-6 |
dewey-full |
670 |
title_sort |
effect of using liquid feedstock in a high pressure cold spray nozzle |
title_auth |
Effect of Using Liquid Feedstock in a High Pressure Cold Spray Nozzle |
abstract |
Abstract This study investigates the effect of water injection in the high pressure chamber of a cold spray nozzle. A De Laval nozzle geometry with constant back pressure and temperature is modeled numerically using Reynolds Stress Model coupled equations. Water spray with a droplet size of 10-100 μm is modeled using both uniform and Rosin-Rammler size distributions. The two-phase flow of gas-liquid is modeled using an unsteady discrete phase mass source with two-way coupling with the main gas flow. Upon injection, the droplets in the water spray evaporate while travelling through the nozzle due to momentum and energy exchange with the gas flow. The evaporation behavior in the presence of water content is modeled and a correlation between the initial diameter and the diameter just before the throat is obtained. As a result, the proper droplet size distribution with a fully evaporative spray can be used as a carrier of nano-particles in cold spray nozzles. Having the results, guides us to substitute the un-evaporated part of the droplet with an equal diameter agglomerate of nano-particles and find a minimum fraction of nano-particles suspended in the liquid which guarantees fully evaporative liquid spray injection. © ASM International 2010 |
abstractGer |
Abstract This study investigates the effect of water injection in the high pressure chamber of a cold spray nozzle. A De Laval nozzle geometry with constant back pressure and temperature is modeled numerically using Reynolds Stress Model coupled equations. Water spray with a droplet size of 10-100 μm is modeled using both uniform and Rosin-Rammler size distributions. The two-phase flow of gas-liquid is modeled using an unsteady discrete phase mass source with two-way coupling with the main gas flow. Upon injection, the droplets in the water spray evaporate while travelling through the nozzle due to momentum and energy exchange with the gas flow. The evaporation behavior in the presence of water content is modeled and a correlation between the initial diameter and the diameter just before the throat is obtained. As a result, the proper droplet size distribution with a fully evaporative spray can be used as a carrier of nano-particles in cold spray nozzles. Having the results, guides us to substitute the un-evaporated part of the droplet with an equal diameter agglomerate of nano-particles and find a minimum fraction of nano-particles suspended in the liquid which guarantees fully evaporative liquid spray injection. © ASM International 2010 |
abstract_unstemmed |
Abstract This study investigates the effect of water injection in the high pressure chamber of a cold spray nozzle. A De Laval nozzle geometry with constant back pressure and temperature is modeled numerically using Reynolds Stress Model coupled equations. Water spray with a droplet size of 10-100 μm is modeled using both uniform and Rosin-Rammler size distributions. The two-phase flow of gas-liquid is modeled using an unsteady discrete phase mass source with two-way coupling with the main gas flow. Upon injection, the droplets in the water spray evaporate while travelling through the nozzle due to momentum and energy exchange with the gas flow. The evaporation behavior in the presence of water content is modeled and a correlation between the initial diameter and the diameter just before the throat is obtained. As a result, the proper droplet size distribution with a fully evaporative spray can be used as a carrier of nano-particles in cold spray nozzles. Having the results, guides us to substitute the un-evaporated part of the droplet with an equal diameter agglomerate of nano-particles and find a minimum fraction of nano-particles suspended in the liquid which guarantees fully evaporative liquid spray injection. © ASM International 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_60 GBV_ILN_70 |
container_issue |
1-2 |
title_short |
Effect of Using Liquid Feedstock in a High Pressure Cold Spray Nozzle |
url |
https://doi.org/10.1007/s11666-010-9597-6 |
remote_bool |
false |
author2 |
Stier, O. Lüthen, V. Dolatabadi, A. |
author2Str |
Stier, O. Lüthen, V. Dolatabadi, A. |
ppnlink |
131101544 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11666-010-9597-6 |
up_date |
2024-07-04T01:38:34.671Z |
_version_ |
1803610609075355648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060558980</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401132710.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11666-010-9597-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060558980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11666-010-9597-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Farvardin, E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of Using Liquid Feedstock in a High Pressure Cold Spray Nozzle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© ASM International 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study investigates the effect of water injection in the high pressure chamber of a cold spray nozzle. A De Laval nozzle geometry with constant back pressure and temperature is modeled numerically using Reynolds Stress Model coupled equations. Water spray with a droplet size of 10-100 μm is modeled using both uniform and Rosin-Rammler size distributions. The two-phase flow of gas-liquid is modeled using an unsteady discrete phase mass source with two-way coupling with the main gas flow. Upon injection, the droplets in the water spray evaporate while travelling through the nozzle due to momentum and energy exchange with the gas flow. The evaporation behavior in the presence of water content is modeled and a correlation between the initial diameter and the diameter just before the throat is obtained. As a result, the proper droplet size distribution with a fully evaporative spray can be used as a carrier of nano-particles in cold spray nozzles. Having the results, guides us to substitute the un-evaporated part of the droplet with an equal diameter agglomerate of nano-particles and find a minimum fraction of nano-particles suspended in the liquid which guarantees fully evaporative liquid spray injection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cold spray process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete phase model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">liquid feedstock</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nano-particle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spray evaporation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">suspension</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stier, O.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lüthen, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dolatabadi, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal spray technology</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">20(2010), 1-2 vom: 17. Nov., Seite 307-316</subfield><subfield code="w">(DE-627)131101544</subfield><subfield code="w">(DE-600)1118266-0</subfield><subfield code="w">(DE-576)038867699</subfield><subfield code="x">1059-9630</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:17</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:307-316</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11666-010-9597-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2010</subfield><subfield code="e">1-2</subfield><subfield code="b">17</subfield><subfield code="c">11</subfield><subfield code="h">307-316</subfield></datafield></record></collection>
|
score |
7.4027834 |