Structural and Tribological Characteristics of Nanoscale FePSiBNb Coatings
Abstract The tribological properties of nanostructured FePSiBNb coating prepared by arc spraying sliding against WC ball at different loads and speeds were investigated. The coating consists of nanoscale α Fe structure with grain size ranging from 12 to 50 nm. The hardness and reduced elastic modulu...
Ausführliche Beschreibung
Autor*in: |
Cheng, Jiangbo [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© ASM International 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of thermal spray technology - Springer US, 1992, 26(2016), 3 vom: 27. Dez., Seite 530-538 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2016 ; number:3 ; day:27 ; month:12 ; pages:530-538 |
Links: |
---|
DOI / URN: |
10.1007/s11666-016-0518-1 |
---|
Katalog-ID: |
OLC2060568404 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2060568404 | ||
003 | DE-627 | ||
005 | 20230401132914.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11666-016-0518-1 |2 doi | |
035 | |a (DE-627)OLC2060568404 | ||
035 | |a (DE-He213)s11666-016-0518-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Cheng, Jiangbo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Structural and Tribological Characteristics of Nanoscale FePSiBNb Coatings |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © ASM International 2016 | ||
520 | |a Abstract The tribological properties of nanostructured FePSiBNb coating prepared by arc spraying sliding against WC ball at different loads and speeds were investigated. The coating consists of nanoscale α Fe structure with grain size ranging from 12 to 50 nm. The hardness and reduced elastic modulus of the coating are 12.3 and 204 GPa, respectively. The average porosity of the coating is less than 3%. The friction coefficient of the coating decreases gradually with increasing normal load. The wear rate of the coating is increasing linearly as a function of the normal load, whereas it shows an inverse trend with increasing sliding speed. The excellent wear resistance of the coating is attributed to its good mechanical properties and the formation of local tribo-oxide films on the worn surface. The dominating wear mechanism of the coating is a combination of oxidative wear coupled with delamination under dry sliding conditions. | ||
650 | 4 | |a dry sliding | |
650 | 4 | |a nanostructured materials | |
650 | 4 | |a wear resistance coatings | |
700 | 1 | |a Liu, Qi |4 aut | |
700 | 1 | |a Sun, Bo |4 aut | |
700 | 1 | |a Liang, Xiubing |4 aut | |
700 | 1 | |a Zhang, Baosen |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of thermal spray technology |d Springer US, 1992 |g 26(2016), 3 vom: 27. Dez., Seite 530-538 |w (DE-627)131101544 |w (DE-600)1118266-0 |w (DE-576)038867699 |x 1059-9630 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2016 |g number:3 |g day:27 |g month:12 |g pages:530-538 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11666-016-0518-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 26 |j 2016 |e 3 |b 27 |c 12 |h 530-538 |
author_variant |
j c jc q l ql b s bs x l xl b z bz |
---|---|
matchkey_str |
article:10599630:2016----::tutrlntiooiacaatrsisfaoc |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s11666-016-0518-1 doi (DE-627)OLC2060568404 (DE-He213)s11666-016-0518-1-p DE-627 ger DE-627 rakwb eng 670 VZ Cheng, Jiangbo verfasserin aut Structural and Tribological Characteristics of Nanoscale FePSiBNb Coatings 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © ASM International 2016 Abstract The tribological properties of nanostructured FePSiBNb coating prepared by arc spraying sliding against WC ball at different loads and speeds were investigated. The coating consists of nanoscale α Fe structure with grain size ranging from 12 to 50 nm. The hardness and reduced elastic modulus of the coating are 12.3 and 204 GPa, respectively. The average porosity of the coating is less than 3%. The friction coefficient of the coating decreases gradually with increasing normal load. The wear rate of the coating is increasing linearly as a function of the normal load, whereas it shows an inverse trend with increasing sliding speed. The excellent wear resistance of the coating is attributed to its good mechanical properties and the formation of local tribo-oxide films on the worn surface. The dominating wear mechanism of the coating is a combination of oxidative wear coupled with delamination under dry sliding conditions. dry sliding nanostructured materials wear resistance coatings Liu, Qi aut Sun, Bo aut Liang, Xiubing aut Zhang, Baosen aut Enthalten in Journal of thermal spray technology Springer US, 1992 26(2016), 3 vom: 27. Dez., Seite 530-538 (DE-627)131101544 (DE-600)1118266-0 (DE-576)038867699 1059-9630 nnns volume:26 year:2016 number:3 day:27 month:12 pages:530-538 https://doi.org/10.1007/s11666-016-0518-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 AR 26 2016 3 27 12 530-538 |
spelling |
10.1007/s11666-016-0518-1 doi (DE-627)OLC2060568404 (DE-He213)s11666-016-0518-1-p DE-627 ger DE-627 rakwb eng 670 VZ Cheng, Jiangbo verfasserin aut Structural and Tribological Characteristics of Nanoscale FePSiBNb Coatings 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © ASM International 2016 Abstract The tribological properties of nanostructured FePSiBNb coating prepared by arc spraying sliding against WC ball at different loads and speeds were investigated. The coating consists of nanoscale α Fe structure with grain size ranging from 12 to 50 nm. The hardness and reduced elastic modulus of the coating are 12.3 and 204 GPa, respectively. The average porosity of the coating is less than 3%. The friction coefficient of the coating decreases gradually with increasing normal load. The wear rate of the coating is increasing linearly as a function of the normal load, whereas it shows an inverse trend with increasing sliding speed. The excellent wear resistance of the coating is attributed to its good mechanical properties and the formation of local tribo-oxide films on the worn surface. The dominating wear mechanism of the coating is a combination of oxidative wear coupled with delamination under dry sliding conditions. dry sliding nanostructured materials wear resistance coatings Liu, Qi aut Sun, Bo aut Liang, Xiubing aut Zhang, Baosen aut Enthalten in Journal of thermal spray technology Springer US, 1992 26(2016), 3 vom: 27. Dez., Seite 530-538 (DE-627)131101544 (DE-600)1118266-0 (DE-576)038867699 1059-9630 nnns volume:26 year:2016 number:3 day:27 month:12 pages:530-538 https://doi.org/10.1007/s11666-016-0518-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 AR 26 2016 3 27 12 530-538 |
allfields_unstemmed |
10.1007/s11666-016-0518-1 doi (DE-627)OLC2060568404 (DE-He213)s11666-016-0518-1-p DE-627 ger DE-627 rakwb eng 670 VZ Cheng, Jiangbo verfasserin aut Structural and Tribological Characteristics of Nanoscale FePSiBNb Coatings 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © ASM International 2016 Abstract The tribological properties of nanostructured FePSiBNb coating prepared by arc spraying sliding against WC ball at different loads and speeds were investigated. The coating consists of nanoscale α Fe structure with grain size ranging from 12 to 50 nm. The hardness and reduced elastic modulus of the coating are 12.3 and 204 GPa, respectively. The average porosity of the coating is less than 3%. The friction coefficient of the coating decreases gradually with increasing normal load. The wear rate of the coating is increasing linearly as a function of the normal load, whereas it shows an inverse trend with increasing sliding speed. The excellent wear resistance of the coating is attributed to its good mechanical properties and the formation of local tribo-oxide films on the worn surface. The dominating wear mechanism of the coating is a combination of oxidative wear coupled with delamination under dry sliding conditions. dry sliding nanostructured materials wear resistance coatings Liu, Qi aut Sun, Bo aut Liang, Xiubing aut Zhang, Baosen aut Enthalten in Journal of thermal spray technology Springer US, 1992 26(2016), 3 vom: 27. Dez., Seite 530-538 (DE-627)131101544 (DE-600)1118266-0 (DE-576)038867699 1059-9630 nnns volume:26 year:2016 number:3 day:27 month:12 pages:530-538 https://doi.org/10.1007/s11666-016-0518-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 AR 26 2016 3 27 12 530-538 |
allfieldsGer |
10.1007/s11666-016-0518-1 doi (DE-627)OLC2060568404 (DE-He213)s11666-016-0518-1-p DE-627 ger DE-627 rakwb eng 670 VZ Cheng, Jiangbo verfasserin aut Structural and Tribological Characteristics of Nanoscale FePSiBNb Coatings 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © ASM International 2016 Abstract The tribological properties of nanostructured FePSiBNb coating prepared by arc spraying sliding against WC ball at different loads and speeds were investigated. The coating consists of nanoscale α Fe structure with grain size ranging from 12 to 50 nm. The hardness and reduced elastic modulus of the coating are 12.3 and 204 GPa, respectively. The average porosity of the coating is less than 3%. The friction coefficient of the coating decreases gradually with increasing normal load. The wear rate of the coating is increasing linearly as a function of the normal load, whereas it shows an inverse trend with increasing sliding speed. The excellent wear resistance of the coating is attributed to its good mechanical properties and the formation of local tribo-oxide films on the worn surface. The dominating wear mechanism of the coating is a combination of oxidative wear coupled with delamination under dry sliding conditions. dry sliding nanostructured materials wear resistance coatings Liu, Qi aut Sun, Bo aut Liang, Xiubing aut Zhang, Baosen aut Enthalten in Journal of thermal spray technology Springer US, 1992 26(2016), 3 vom: 27. Dez., Seite 530-538 (DE-627)131101544 (DE-600)1118266-0 (DE-576)038867699 1059-9630 nnns volume:26 year:2016 number:3 day:27 month:12 pages:530-538 https://doi.org/10.1007/s11666-016-0518-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 AR 26 2016 3 27 12 530-538 |
allfieldsSound |
10.1007/s11666-016-0518-1 doi (DE-627)OLC2060568404 (DE-He213)s11666-016-0518-1-p DE-627 ger DE-627 rakwb eng 670 VZ Cheng, Jiangbo verfasserin aut Structural and Tribological Characteristics of Nanoscale FePSiBNb Coatings 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © ASM International 2016 Abstract The tribological properties of nanostructured FePSiBNb coating prepared by arc spraying sliding against WC ball at different loads and speeds were investigated. The coating consists of nanoscale α Fe structure with grain size ranging from 12 to 50 nm. The hardness and reduced elastic modulus of the coating are 12.3 and 204 GPa, respectively. The average porosity of the coating is less than 3%. The friction coefficient of the coating decreases gradually with increasing normal load. The wear rate of the coating is increasing linearly as a function of the normal load, whereas it shows an inverse trend with increasing sliding speed. The excellent wear resistance of the coating is attributed to its good mechanical properties and the formation of local tribo-oxide films on the worn surface. The dominating wear mechanism of the coating is a combination of oxidative wear coupled with delamination under dry sliding conditions. dry sliding nanostructured materials wear resistance coatings Liu, Qi aut Sun, Bo aut Liang, Xiubing aut Zhang, Baosen aut Enthalten in Journal of thermal spray technology Springer US, 1992 26(2016), 3 vom: 27. Dez., Seite 530-538 (DE-627)131101544 (DE-600)1118266-0 (DE-576)038867699 1059-9630 nnns volume:26 year:2016 number:3 day:27 month:12 pages:530-538 https://doi.org/10.1007/s11666-016-0518-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 AR 26 2016 3 27 12 530-538 |
language |
English |
source |
Enthalten in Journal of thermal spray technology 26(2016), 3 vom: 27. Dez., Seite 530-538 volume:26 year:2016 number:3 day:27 month:12 pages:530-538 |
sourceStr |
Enthalten in Journal of thermal spray technology 26(2016), 3 vom: 27. Dez., Seite 530-538 volume:26 year:2016 number:3 day:27 month:12 pages:530-538 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
dry sliding nanostructured materials wear resistance coatings |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of thermal spray technology |
authorswithroles_txt_mv |
Cheng, Jiangbo @@aut@@ Liu, Qi @@aut@@ Sun, Bo @@aut@@ Liang, Xiubing @@aut@@ Zhang, Baosen @@aut@@ |
publishDateDaySort_date |
2016-12-27T00:00:00Z |
hierarchy_top_id |
131101544 |
dewey-sort |
3670 |
id |
OLC2060568404 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060568404</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401132914.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11666-016-0518-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060568404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11666-016-0518-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cheng, Jiangbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structural and Tribological Characteristics of Nanoscale FePSiBNb Coatings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© ASM International 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The tribological properties of nanostructured FePSiBNb coating prepared by arc spraying sliding against WC ball at different loads and speeds were investigated. The coating consists of nanoscale α Fe structure with grain size ranging from 12 to 50 nm. The hardness and reduced elastic modulus of the coating are 12.3 and 204 GPa, respectively. The average porosity of the coating is less than 3%. The friction coefficient of the coating decreases gradually with increasing normal load. The wear rate of the coating is increasing linearly as a function of the normal load, whereas it shows an inverse trend with increasing sliding speed. The excellent wear resistance of the coating is attributed to its good mechanical properties and the formation of local tribo-oxide films on the worn surface. The dominating wear mechanism of the coating is a combination of oxidative wear coupled with delamination under dry sliding conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dry sliding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanostructured materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wear resistance coatings</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Qi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Bo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Xiubing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Baosen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal spray technology</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">26(2016), 3 vom: 27. Dez., Seite 530-538</subfield><subfield code="w">(DE-627)131101544</subfield><subfield code="w">(DE-600)1118266-0</subfield><subfield code="w">(DE-576)038867699</subfield><subfield code="x">1059-9630</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:27</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:530-538</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11666-016-0518-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">27</subfield><subfield code="c">12</subfield><subfield code="h">530-538</subfield></datafield></record></collection>
|
author |
Cheng, Jiangbo |
spellingShingle |
Cheng, Jiangbo ddc 670 misc dry sliding misc nanostructured materials misc wear resistance coatings Structural and Tribological Characteristics of Nanoscale FePSiBNb Coatings |
authorStr |
Cheng, Jiangbo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131101544 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1059-9630 |
topic_title |
670 VZ Structural and Tribological Characteristics of Nanoscale FePSiBNb Coatings dry sliding nanostructured materials wear resistance coatings |
topic |
ddc 670 misc dry sliding misc nanostructured materials misc wear resistance coatings |
topic_unstemmed |
ddc 670 misc dry sliding misc nanostructured materials misc wear resistance coatings |
topic_browse |
ddc 670 misc dry sliding misc nanostructured materials misc wear resistance coatings |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of thermal spray technology |
hierarchy_parent_id |
131101544 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of thermal spray technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131101544 (DE-600)1118266-0 (DE-576)038867699 |
title |
Structural and Tribological Characteristics of Nanoscale FePSiBNb Coatings |
ctrlnum |
(DE-627)OLC2060568404 (DE-He213)s11666-016-0518-1-p |
title_full |
Structural and Tribological Characteristics of Nanoscale FePSiBNb Coatings |
author_sort |
Cheng, Jiangbo |
journal |
Journal of thermal spray technology |
journalStr |
Journal of thermal spray technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
530 |
author_browse |
Cheng, Jiangbo Liu, Qi Sun, Bo Liang, Xiubing Zhang, Baosen |
container_volume |
26 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Cheng, Jiangbo |
doi_str_mv |
10.1007/s11666-016-0518-1 |
dewey-full |
670 |
title_sort |
structural and tribological characteristics of nanoscale fepsibnb coatings |
title_auth |
Structural and Tribological Characteristics of Nanoscale FePSiBNb Coatings |
abstract |
Abstract The tribological properties of nanostructured FePSiBNb coating prepared by arc spraying sliding against WC ball at different loads and speeds were investigated. The coating consists of nanoscale α Fe structure with grain size ranging from 12 to 50 nm. The hardness and reduced elastic modulus of the coating are 12.3 and 204 GPa, respectively. The average porosity of the coating is less than 3%. The friction coefficient of the coating decreases gradually with increasing normal load. The wear rate of the coating is increasing linearly as a function of the normal load, whereas it shows an inverse trend with increasing sliding speed. The excellent wear resistance of the coating is attributed to its good mechanical properties and the formation of local tribo-oxide films on the worn surface. The dominating wear mechanism of the coating is a combination of oxidative wear coupled with delamination under dry sliding conditions. © ASM International 2016 |
abstractGer |
Abstract The tribological properties of nanostructured FePSiBNb coating prepared by arc spraying sliding against WC ball at different loads and speeds were investigated. The coating consists of nanoscale α Fe structure with grain size ranging from 12 to 50 nm. The hardness and reduced elastic modulus of the coating are 12.3 and 204 GPa, respectively. The average porosity of the coating is less than 3%. The friction coefficient of the coating decreases gradually with increasing normal load. The wear rate of the coating is increasing linearly as a function of the normal load, whereas it shows an inverse trend with increasing sliding speed. The excellent wear resistance of the coating is attributed to its good mechanical properties and the formation of local tribo-oxide films on the worn surface. The dominating wear mechanism of the coating is a combination of oxidative wear coupled with delamination under dry sliding conditions. © ASM International 2016 |
abstract_unstemmed |
Abstract The tribological properties of nanostructured FePSiBNb coating prepared by arc spraying sliding against WC ball at different loads and speeds were investigated. The coating consists of nanoscale α Fe structure with grain size ranging from 12 to 50 nm. The hardness and reduced elastic modulus of the coating are 12.3 and 204 GPa, respectively. The average porosity of the coating is less than 3%. The friction coefficient of the coating decreases gradually with increasing normal load. The wear rate of the coating is increasing linearly as a function of the normal load, whereas it shows an inverse trend with increasing sliding speed. The excellent wear resistance of the coating is attributed to its good mechanical properties and the formation of local tribo-oxide films on the worn surface. The dominating wear mechanism of the coating is a combination of oxidative wear coupled with delamination under dry sliding conditions. © ASM International 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 |
container_issue |
3 |
title_short |
Structural and Tribological Characteristics of Nanoscale FePSiBNb Coatings |
url |
https://doi.org/10.1007/s11666-016-0518-1 |
remote_bool |
false |
author2 |
Liu, Qi Sun, Bo Liang, Xiubing Zhang, Baosen |
author2Str |
Liu, Qi Sun, Bo Liang, Xiubing Zhang, Baosen |
ppnlink |
131101544 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11666-016-0518-1 |
up_date |
2024-07-04T01:40:13.830Z |
_version_ |
1803610713054248960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060568404</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401132914.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11666-016-0518-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060568404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11666-016-0518-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cheng, Jiangbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structural and Tribological Characteristics of Nanoscale FePSiBNb Coatings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© ASM International 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The tribological properties of nanostructured FePSiBNb coating prepared by arc spraying sliding against WC ball at different loads and speeds were investigated. The coating consists of nanoscale α Fe structure with grain size ranging from 12 to 50 nm. The hardness and reduced elastic modulus of the coating are 12.3 and 204 GPa, respectively. The average porosity of the coating is less than 3%. The friction coefficient of the coating decreases gradually with increasing normal load. The wear rate of the coating is increasing linearly as a function of the normal load, whereas it shows an inverse trend with increasing sliding speed. The excellent wear resistance of the coating is attributed to its good mechanical properties and the formation of local tribo-oxide films on the worn surface. The dominating wear mechanism of the coating is a combination of oxidative wear coupled with delamination under dry sliding conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dry sliding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanostructured materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wear resistance coatings</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Qi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Bo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Xiubing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Baosen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal spray technology</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">26(2016), 3 vom: 27. Dez., Seite 530-538</subfield><subfield code="w">(DE-627)131101544</subfield><subfield code="w">(DE-600)1118266-0</subfield><subfield code="w">(DE-576)038867699</subfield><subfield code="x">1059-9630</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:27</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:530-538</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11666-016-0518-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">27</subfield><subfield code="c">12</subfield><subfield code="h">530-538</subfield></datafield></record></collection>
|
score |
7.39968 |