Comparative Analysis of Methods for Testing Materials for Fatigue Cracking Resistance
The conventional methods of testing for fatigue cracking resistance (compact samples) are compared with testing with a constant amplitude of the stress intensity factor (DCB samples). Examples are presented of the effect of the ambient environment on the growth rate of a crack in a DCB sample and co...
Ausführliche Beschreibung
Autor*in: |
Gol’tsev, V. Yu. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Atomic energy - Springer US, 1992, 118(2015), 1 vom: 18. Apr., Seite 17-24 |
---|---|
Übergeordnetes Werk: |
volume:118 ; year:2015 ; number:1 ; day:18 ; month:04 ; pages:17-24 |
Links: |
---|
DOI / URN: |
10.1007/s10512-015-9950-4 |
---|
Katalog-ID: |
OLC2060873878 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2060873878 | ||
003 | DE-627 | ||
005 | 20230502214700.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10512-015-9950-4 |2 doi | |
035 | |a (DE-627)OLC2060873878 | ||
035 | |a (DE-He213)s10512-015-9950-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Gol’tsev, V. Yu. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Comparative Analysis of Methods for Testing Materials for Fatigue Cracking Resistance |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2015 | ||
520 | |a The conventional methods of testing for fatigue cracking resistance (compact samples) are compared with testing with a constant amplitude of the stress intensity factor (DCB samples). Examples are presented of the effect of the ambient environment on the growth rate of a crack in a DCB sample and constant growth rate of a crack in a double beam sample with constant amplitude of the stress intensity factor. The advantages and limitations of the testing methods studied are discussed. It is noted that DCB samples and double-beam samples with crack length independent stress intensity factor hold promise for studying the regularities of crack growth not only under cyclic but also under prolonged static loading. | ||
650 | 4 | |a Fatigue | |
650 | 4 | |a Fatigue Crack | |
650 | 4 | |a Stress Intensity Factor | |
650 | 4 | |a Crack Growth Rate | |
650 | 4 | |a Fatigue Crack Growth | |
700 | 1 | |a Markochev, V. M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Atomic energy |d Springer US, 1992 |g 118(2015), 1 vom: 18. Apr., Seite 17-24 |w (DE-627)17102916X |w (DE-600)1142004-2 |w (DE-576)033040583 |x 1063-4258 |7 nnns |
773 | 1 | 8 | |g volume:118 |g year:2015 |g number:1 |g day:18 |g month:04 |g pages:17-24 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10512-015-9950-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 118 |j 2015 |e 1 |b 18 |c 04 |h 17-24 |
author_variant |
v y g vy vyg v m m vm vmm |
---|---|
matchkey_str |
article:10634258:2015----::oprtvaayiomtosotsigaeilfrai |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s10512-015-9950-4 doi (DE-627)OLC2060873878 (DE-He213)s10512-015-9950-4-p DE-627 ger DE-627 rakwb eng 530 VZ Gol’tsev, V. Yu. verfasserin aut Comparative Analysis of Methods for Testing Materials for Fatigue Cracking Resistance 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 The conventional methods of testing for fatigue cracking resistance (compact samples) are compared with testing with a constant amplitude of the stress intensity factor (DCB samples). Examples are presented of the effect of the ambient environment on the growth rate of a crack in a DCB sample and constant growth rate of a crack in a double beam sample with constant amplitude of the stress intensity factor. The advantages and limitations of the testing methods studied are discussed. It is noted that DCB samples and double-beam samples with crack length independent stress intensity factor hold promise for studying the regularities of crack growth not only under cyclic but also under prolonged static loading. Fatigue Fatigue Crack Stress Intensity Factor Crack Growth Rate Fatigue Crack Growth Markochev, V. M. aut Enthalten in Atomic energy Springer US, 1992 118(2015), 1 vom: 18. Apr., Seite 17-24 (DE-627)17102916X (DE-600)1142004-2 (DE-576)033040583 1063-4258 nnns volume:118 year:2015 number:1 day:18 month:04 pages:17-24 https://doi.org/10.1007/s10512-015-9950-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 118 2015 1 18 04 17-24 |
spelling |
10.1007/s10512-015-9950-4 doi (DE-627)OLC2060873878 (DE-He213)s10512-015-9950-4-p DE-627 ger DE-627 rakwb eng 530 VZ Gol’tsev, V. Yu. verfasserin aut Comparative Analysis of Methods for Testing Materials for Fatigue Cracking Resistance 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 The conventional methods of testing for fatigue cracking resistance (compact samples) are compared with testing with a constant amplitude of the stress intensity factor (DCB samples). Examples are presented of the effect of the ambient environment on the growth rate of a crack in a DCB sample and constant growth rate of a crack in a double beam sample with constant amplitude of the stress intensity factor. The advantages and limitations of the testing methods studied are discussed. It is noted that DCB samples and double-beam samples with crack length independent stress intensity factor hold promise for studying the regularities of crack growth not only under cyclic but also under prolonged static loading. Fatigue Fatigue Crack Stress Intensity Factor Crack Growth Rate Fatigue Crack Growth Markochev, V. M. aut Enthalten in Atomic energy Springer US, 1992 118(2015), 1 vom: 18. Apr., Seite 17-24 (DE-627)17102916X (DE-600)1142004-2 (DE-576)033040583 1063-4258 nnns volume:118 year:2015 number:1 day:18 month:04 pages:17-24 https://doi.org/10.1007/s10512-015-9950-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 118 2015 1 18 04 17-24 |
allfields_unstemmed |
10.1007/s10512-015-9950-4 doi (DE-627)OLC2060873878 (DE-He213)s10512-015-9950-4-p DE-627 ger DE-627 rakwb eng 530 VZ Gol’tsev, V. Yu. verfasserin aut Comparative Analysis of Methods for Testing Materials for Fatigue Cracking Resistance 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 The conventional methods of testing for fatigue cracking resistance (compact samples) are compared with testing with a constant amplitude of the stress intensity factor (DCB samples). Examples are presented of the effect of the ambient environment on the growth rate of a crack in a DCB sample and constant growth rate of a crack in a double beam sample with constant amplitude of the stress intensity factor. The advantages and limitations of the testing methods studied are discussed. It is noted that DCB samples and double-beam samples with crack length independent stress intensity factor hold promise for studying the regularities of crack growth not only under cyclic but also under prolonged static loading. Fatigue Fatigue Crack Stress Intensity Factor Crack Growth Rate Fatigue Crack Growth Markochev, V. M. aut Enthalten in Atomic energy Springer US, 1992 118(2015), 1 vom: 18. Apr., Seite 17-24 (DE-627)17102916X (DE-600)1142004-2 (DE-576)033040583 1063-4258 nnns volume:118 year:2015 number:1 day:18 month:04 pages:17-24 https://doi.org/10.1007/s10512-015-9950-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 118 2015 1 18 04 17-24 |
allfieldsGer |
10.1007/s10512-015-9950-4 doi (DE-627)OLC2060873878 (DE-He213)s10512-015-9950-4-p DE-627 ger DE-627 rakwb eng 530 VZ Gol’tsev, V. Yu. verfasserin aut Comparative Analysis of Methods for Testing Materials for Fatigue Cracking Resistance 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 The conventional methods of testing for fatigue cracking resistance (compact samples) are compared with testing with a constant amplitude of the stress intensity factor (DCB samples). Examples are presented of the effect of the ambient environment on the growth rate of a crack in a DCB sample and constant growth rate of a crack in a double beam sample with constant amplitude of the stress intensity factor. The advantages and limitations of the testing methods studied are discussed. It is noted that DCB samples and double-beam samples with crack length independent stress intensity factor hold promise for studying the regularities of crack growth not only under cyclic but also under prolonged static loading. Fatigue Fatigue Crack Stress Intensity Factor Crack Growth Rate Fatigue Crack Growth Markochev, V. M. aut Enthalten in Atomic energy Springer US, 1992 118(2015), 1 vom: 18. Apr., Seite 17-24 (DE-627)17102916X (DE-600)1142004-2 (DE-576)033040583 1063-4258 nnns volume:118 year:2015 number:1 day:18 month:04 pages:17-24 https://doi.org/10.1007/s10512-015-9950-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 118 2015 1 18 04 17-24 |
allfieldsSound |
10.1007/s10512-015-9950-4 doi (DE-627)OLC2060873878 (DE-He213)s10512-015-9950-4-p DE-627 ger DE-627 rakwb eng 530 VZ Gol’tsev, V. Yu. verfasserin aut Comparative Analysis of Methods for Testing Materials for Fatigue Cracking Resistance 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 The conventional methods of testing for fatigue cracking resistance (compact samples) are compared with testing with a constant amplitude of the stress intensity factor (DCB samples). Examples are presented of the effect of the ambient environment on the growth rate of a crack in a DCB sample and constant growth rate of a crack in a double beam sample with constant amplitude of the stress intensity factor. The advantages and limitations of the testing methods studied are discussed. It is noted that DCB samples and double-beam samples with crack length independent stress intensity factor hold promise for studying the regularities of crack growth not only under cyclic but also under prolonged static loading. Fatigue Fatigue Crack Stress Intensity Factor Crack Growth Rate Fatigue Crack Growth Markochev, V. M. aut Enthalten in Atomic energy Springer US, 1992 118(2015), 1 vom: 18. Apr., Seite 17-24 (DE-627)17102916X (DE-600)1142004-2 (DE-576)033040583 1063-4258 nnns volume:118 year:2015 number:1 day:18 month:04 pages:17-24 https://doi.org/10.1007/s10512-015-9950-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 118 2015 1 18 04 17-24 |
language |
English |
source |
Enthalten in Atomic energy 118(2015), 1 vom: 18. Apr., Seite 17-24 volume:118 year:2015 number:1 day:18 month:04 pages:17-24 |
sourceStr |
Enthalten in Atomic energy 118(2015), 1 vom: 18. Apr., Seite 17-24 volume:118 year:2015 number:1 day:18 month:04 pages:17-24 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fatigue Fatigue Crack Stress Intensity Factor Crack Growth Rate Fatigue Crack Growth |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Atomic energy |
authorswithroles_txt_mv |
Gol’tsev, V. Yu. @@aut@@ Markochev, V. M. @@aut@@ |
publishDateDaySort_date |
2015-04-18T00:00:00Z |
hierarchy_top_id |
17102916X |
dewey-sort |
3530 |
id |
OLC2060873878 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060873878</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502214700.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10512-015-9950-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060873878</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10512-015-9950-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gol’tsev, V. Yu.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparative Analysis of Methods for Testing Materials for Fatigue Cracking Resistance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The conventional methods of testing for fatigue cracking resistance (compact samples) are compared with testing with a constant amplitude of the stress intensity factor (DCB samples). Examples are presented of the effect of the ambient environment on the growth rate of a crack in a DCB sample and constant growth rate of a crack in a double beam sample with constant amplitude of the stress intensity factor. The advantages and limitations of the testing methods studied are discussed. It is noted that DCB samples and double-beam samples with crack length independent stress intensity factor hold promise for studying the regularities of crack growth not only under cyclic but also under prolonged static loading.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatigue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatigue Crack</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Intensity Factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crack Growth Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatigue Crack Growth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Markochev, V. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Atomic energy</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">118(2015), 1 vom: 18. Apr., Seite 17-24</subfield><subfield code="w">(DE-627)17102916X</subfield><subfield code="w">(DE-600)1142004-2</subfield><subfield code="w">(DE-576)033040583</subfield><subfield code="x">1063-4258</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:118</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:17-24</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10512-015-9950-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">118</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">04</subfield><subfield code="h">17-24</subfield></datafield></record></collection>
|
author |
Gol’tsev, V. Yu. |
spellingShingle |
Gol’tsev, V. Yu. ddc 530 misc Fatigue misc Fatigue Crack misc Stress Intensity Factor misc Crack Growth Rate misc Fatigue Crack Growth Comparative Analysis of Methods for Testing Materials for Fatigue Cracking Resistance |
authorStr |
Gol’tsev, V. Yu. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)17102916X |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1063-4258 |
topic_title |
530 VZ Comparative Analysis of Methods for Testing Materials for Fatigue Cracking Resistance Fatigue Fatigue Crack Stress Intensity Factor Crack Growth Rate Fatigue Crack Growth |
topic |
ddc 530 misc Fatigue misc Fatigue Crack misc Stress Intensity Factor misc Crack Growth Rate misc Fatigue Crack Growth |
topic_unstemmed |
ddc 530 misc Fatigue misc Fatigue Crack misc Stress Intensity Factor misc Crack Growth Rate misc Fatigue Crack Growth |
topic_browse |
ddc 530 misc Fatigue misc Fatigue Crack misc Stress Intensity Factor misc Crack Growth Rate misc Fatigue Crack Growth |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Atomic energy |
hierarchy_parent_id |
17102916X |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Atomic energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)17102916X (DE-600)1142004-2 (DE-576)033040583 |
title |
Comparative Analysis of Methods for Testing Materials for Fatigue Cracking Resistance |
ctrlnum |
(DE-627)OLC2060873878 (DE-He213)s10512-015-9950-4-p |
title_full |
Comparative Analysis of Methods for Testing Materials for Fatigue Cracking Resistance |
author_sort |
Gol’tsev, V. Yu. |
journal |
Atomic energy |
journalStr |
Atomic energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
17 |
author_browse |
Gol’tsev, V. Yu. Markochev, V. M. |
container_volume |
118 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Gol’tsev, V. Yu. |
doi_str_mv |
10.1007/s10512-015-9950-4 |
dewey-full |
530 |
title_sort |
comparative analysis of methods for testing materials for fatigue cracking resistance |
title_auth |
Comparative Analysis of Methods for Testing Materials for Fatigue Cracking Resistance |
abstract |
The conventional methods of testing for fatigue cracking resistance (compact samples) are compared with testing with a constant amplitude of the stress intensity factor (DCB samples). Examples are presented of the effect of the ambient environment on the growth rate of a crack in a DCB sample and constant growth rate of a crack in a double beam sample with constant amplitude of the stress intensity factor. The advantages and limitations of the testing methods studied are discussed. It is noted that DCB samples and double-beam samples with crack length independent stress intensity factor hold promise for studying the regularities of crack growth not only under cyclic but also under prolonged static loading. © Springer Science+Business Media New York 2015 |
abstractGer |
The conventional methods of testing for fatigue cracking resistance (compact samples) are compared with testing with a constant amplitude of the stress intensity factor (DCB samples). Examples are presented of the effect of the ambient environment on the growth rate of a crack in a DCB sample and constant growth rate of a crack in a double beam sample with constant amplitude of the stress intensity factor. The advantages and limitations of the testing methods studied are discussed. It is noted that DCB samples and double-beam samples with crack length independent stress intensity factor hold promise for studying the regularities of crack growth not only under cyclic but also under prolonged static loading. © Springer Science+Business Media New York 2015 |
abstract_unstemmed |
The conventional methods of testing for fatigue cracking resistance (compact samples) are compared with testing with a constant amplitude of the stress intensity factor (DCB samples). Examples are presented of the effect of the ambient environment on the growth rate of a crack in a DCB sample and constant growth rate of a crack in a double beam sample with constant amplitude of the stress intensity factor. The advantages and limitations of the testing methods studied are discussed. It is noted that DCB samples and double-beam samples with crack length independent stress intensity factor hold promise for studying the regularities of crack growth not only under cyclic but also under prolonged static loading. © Springer Science+Business Media New York 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
1 |
title_short |
Comparative Analysis of Methods for Testing Materials for Fatigue Cracking Resistance |
url |
https://doi.org/10.1007/s10512-015-9950-4 |
remote_bool |
false |
author2 |
Markochev, V. M. |
author2Str |
Markochev, V. M. |
ppnlink |
17102916X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10512-015-9950-4 |
up_date |
2024-07-04T02:21:44.582Z |
_version_ |
1803613324792823808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060873878</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502214700.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10512-015-9950-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060873878</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10512-015-9950-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gol’tsev, V. Yu.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparative Analysis of Methods for Testing Materials for Fatigue Cracking Resistance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The conventional methods of testing for fatigue cracking resistance (compact samples) are compared with testing with a constant amplitude of the stress intensity factor (DCB samples). Examples are presented of the effect of the ambient environment on the growth rate of a crack in a DCB sample and constant growth rate of a crack in a double beam sample with constant amplitude of the stress intensity factor. The advantages and limitations of the testing methods studied are discussed. It is noted that DCB samples and double-beam samples with crack length independent stress intensity factor hold promise for studying the regularities of crack growth not only under cyclic but also under prolonged static loading.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatigue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatigue Crack</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Intensity Factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crack Growth Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatigue Crack Growth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Markochev, V. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Atomic energy</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">118(2015), 1 vom: 18. Apr., Seite 17-24</subfield><subfield code="w">(DE-627)17102916X</subfield><subfield code="w">(DE-600)1142004-2</subfield><subfield code="w">(DE-576)033040583</subfield><subfield code="x">1063-4258</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:118</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:17-24</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10512-015-9950-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">118</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">04</subfield><subfield code="h">17-24</subfield></datafield></record></collection>
|
score |
7.400194 |