Optimization in Identification of Logical-Probabilistic Risk Models
Abstract Identification of logical-probabilistic risk models with groups of incompatible events is investigated by the random search method. The integral multi-extremal multi-parametric aim function of the optimization problem in investigated as a function of the number of optimizations, maximal and...
Ausführliche Beschreibung
Autor*in: |
Rybakov, A. V. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2003 |
---|
Schlagwörter: |
---|
Anmerkung: |
© MAIK “Nauka/Interperiodica” 2003 |
---|
Übergeordnetes Werk: |
Enthalten in: Automation and remote control - Kluwer Academic Publishers-Plenum Publishers, 1957, 64(2003), 7 vom: Juli, Seite 1063-1073 |
---|---|
Übergeordnetes Werk: |
volume:64 ; year:2003 ; number:7 ; month:07 ; pages:1063-1073 |
Links: |
---|
DOI / URN: |
10.1023/A:1024726000159 |
---|
Katalog-ID: |
OLC2060885841 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2060885841 | ||
003 | DE-627 | ||
005 | 20230502214809.0 | ||
007 | tu | ||
008 | 200820s2003 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1024726000159 |2 doi | |
035 | |a (DE-627)OLC2060885841 | ||
035 | |a (DE-He213)A:1024726000159-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 000 |a 620 |q VZ |
100 | 1 | |a Rybakov, A. V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimization in Identification of Logical-Probabilistic Risk Models |
264 | 1 | |c 2003 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © MAIK “Nauka/Interperiodica” 2003 | ||
520 | |a Abstract Identification of logical-probabilistic risk models with groups of incompatible events is investigated by the random search method. The integral multi-extremal multi-parametric aim function of the optimization problem in investigated as a function of the number of optimizations, maximal and minimal amplitudes of increments of parameters, initial value of the aim function, choice of identical or different amplitudes of increments for different parameters, and risk distribution. An effective method for finding the global extremum in identifying a logical-probabilistic risk model within reasonable computation time is developed. | ||
650 | 4 | |a Mechanical Engineer | |
650 | 4 | |a Computation Time | |
650 | 4 | |a System Theory | |
650 | 4 | |a Search Method | |
650 | 4 | |a Risk Model | |
700 | 1 | |a Solozhentsev, E. D. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Automation and remote control |d Kluwer Academic Publishers-Plenum Publishers, 1957 |g 64(2003), 7 vom: Juli, Seite 1063-1073 |w (DE-627)129603481 |w (DE-600)241725-X |w (DE-576)015097315 |x 0005-1179 |7 nnns |
773 | 1 | 8 | |g volume:64 |g year:2003 |g number:7 |g month:07 |g pages:1063-1073 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1024726000159 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 64 |j 2003 |e 7 |c 07 |h 1063-1073 |
author_variant |
a v r av avr e d s ed eds |
---|---|
matchkey_str |
article:00051179:2003----::piiainndniiainfoiapoai |
hierarchy_sort_str |
2003 |
publishDate |
2003 |
allfields |
10.1023/A:1024726000159 doi (DE-627)OLC2060885841 (DE-He213)A:1024726000159-p DE-627 ger DE-627 rakwb eng 000 620 VZ Rybakov, A. V. verfasserin aut Optimization in Identification of Logical-Probabilistic Risk Models 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2003 Abstract Identification of logical-probabilistic risk models with groups of incompatible events is investigated by the random search method. The integral multi-extremal multi-parametric aim function of the optimization problem in investigated as a function of the number of optimizations, maximal and minimal amplitudes of increments of parameters, initial value of the aim function, choice of identical or different amplitudes of increments for different parameters, and risk distribution. An effective method for finding the global extremum in identifying a logical-probabilistic risk model within reasonable computation time is developed. Mechanical Engineer Computation Time System Theory Search Method Risk Model Solozhentsev, E. D. aut Enthalten in Automation and remote control Kluwer Academic Publishers-Plenum Publishers, 1957 64(2003), 7 vom: Juli, Seite 1063-1073 (DE-627)129603481 (DE-600)241725-X (DE-576)015097315 0005-1179 nnns volume:64 year:2003 number:7 month:07 pages:1063-1073 https://doi.org/10.1023/A:1024726000159 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_4116 GBV_ILN_4700 AR 64 2003 7 07 1063-1073 |
spelling |
10.1023/A:1024726000159 doi (DE-627)OLC2060885841 (DE-He213)A:1024726000159-p DE-627 ger DE-627 rakwb eng 000 620 VZ Rybakov, A. V. verfasserin aut Optimization in Identification of Logical-Probabilistic Risk Models 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2003 Abstract Identification of logical-probabilistic risk models with groups of incompatible events is investigated by the random search method. The integral multi-extremal multi-parametric aim function of the optimization problem in investigated as a function of the number of optimizations, maximal and minimal amplitudes of increments of parameters, initial value of the aim function, choice of identical or different amplitudes of increments for different parameters, and risk distribution. An effective method for finding the global extremum in identifying a logical-probabilistic risk model within reasonable computation time is developed. Mechanical Engineer Computation Time System Theory Search Method Risk Model Solozhentsev, E. D. aut Enthalten in Automation and remote control Kluwer Academic Publishers-Plenum Publishers, 1957 64(2003), 7 vom: Juli, Seite 1063-1073 (DE-627)129603481 (DE-600)241725-X (DE-576)015097315 0005-1179 nnns volume:64 year:2003 number:7 month:07 pages:1063-1073 https://doi.org/10.1023/A:1024726000159 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_4116 GBV_ILN_4700 AR 64 2003 7 07 1063-1073 |
allfields_unstemmed |
10.1023/A:1024726000159 doi (DE-627)OLC2060885841 (DE-He213)A:1024726000159-p DE-627 ger DE-627 rakwb eng 000 620 VZ Rybakov, A. V. verfasserin aut Optimization in Identification of Logical-Probabilistic Risk Models 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2003 Abstract Identification of logical-probabilistic risk models with groups of incompatible events is investigated by the random search method. The integral multi-extremal multi-parametric aim function of the optimization problem in investigated as a function of the number of optimizations, maximal and minimal amplitudes of increments of parameters, initial value of the aim function, choice of identical or different amplitudes of increments for different parameters, and risk distribution. An effective method for finding the global extremum in identifying a logical-probabilistic risk model within reasonable computation time is developed. Mechanical Engineer Computation Time System Theory Search Method Risk Model Solozhentsev, E. D. aut Enthalten in Automation and remote control Kluwer Academic Publishers-Plenum Publishers, 1957 64(2003), 7 vom: Juli, Seite 1063-1073 (DE-627)129603481 (DE-600)241725-X (DE-576)015097315 0005-1179 nnns volume:64 year:2003 number:7 month:07 pages:1063-1073 https://doi.org/10.1023/A:1024726000159 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_4116 GBV_ILN_4700 AR 64 2003 7 07 1063-1073 |
allfieldsGer |
10.1023/A:1024726000159 doi (DE-627)OLC2060885841 (DE-He213)A:1024726000159-p DE-627 ger DE-627 rakwb eng 000 620 VZ Rybakov, A. V. verfasserin aut Optimization in Identification of Logical-Probabilistic Risk Models 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2003 Abstract Identification of logical-probabilistic risk models with groups of incompatible events is investigated by the random search method. The integral multi-extremal multi-parametric aim function of the optimization problem in investigated as a function of the number of optimizations, maximal and minimal amplitudes of increments of parameters, initial value of the aim function, choice of identical or different amplitudes of increments for different parameters, and risk distribution. An effective method for finding the global extremum in identifying a logical-probabilistic risk model within reasonable computation time is developed. Mechanical Engineer Computation Time System Theory Search Method Risk Model Solozhentsev, E. D. aut Enthalten in Automation and remote control Kluwer Academic Publishers-Plenum Publishers, 1957 64(2003), 7 vom: Juli, Seite 1063-1073 (DE-627)129603481 (DE-600)241725-X (DE-576)015097315 0005-1179 nnns volume:64 year:2003 number:7 month:07 pages:1063-1073 https://doi.org/10.1023/A:1024726000159 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_4116 GBV_ILN_4700 AR 64 2003 7 07 1063-1073 |
allfieldsSound |
10.1023/A:1024726000159 doi (DE-627)OLC2060885841 (DE-He213)A:1024726000159-p DE-627 ger DE-627 rakwb eng 000 620 VZ Rybakov, A. V. verfasserin aut Optimization in Identification of Logical-Probabilistic Risk Models 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2003 Abstract Identification of logical-probabilistic risk models with groups of incompatible events is investigated by the random search method. The integral multi-extremal multi-parametric aim function of the optimization problem in investigated as a function of the number of optimizations, maximal and minimal amplitudes of increments of parameters, initial value of the aim function, choice of identical or different amplitudes of increments for different parameters, and risk distribution. An effective method for finding the global extremum in identifying a logical-probabilistic risk model within reasonable computation time is developed. Mechanical Engineer Computation Time System Theory Search Method Risk Model Solozhentsev, E. D. aut Enthalten in Automation and remote control Kluwer Academic Publishers-Plenum Publishers, 1957 64(2003), 7 vom: Juli, Seite 1063-1073 (DE-627)129603481 (DE-600)241725-X (DE-576)015097315 0005-1179 nnns volume:64 year:2003 number:7 month:07 pages:1063-1073 https://doi.org/10.1023/A:1024726000159 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_4116 GBV_ILN_4700 AR 64 2003 7 07 1063-1073 |
language |
English |
source |
Enthalten in Automation and remote control 64(2003), 7 vom: Juli, Seite 1063-1073 volume:64 year:2003 number:7 month:07 pages:1063-1073 |
sourceStr |
Enthalten in Automation and remote control 64(2003), 7 vom: Juli, Seite 1063-1073 volume:64 year:2003 number:7 month:07 pages:1063-1073 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mechanical Engineer Computation Time System Theory Search Method Risk Model |
dewey-raw |
000 |
isfreeaccess_bool |
false |
container_title |
Automation and remote control |
authorswithroles_txt_mv |
Rybakov, A. V. @@aut@@ Solozhentsev, E. D. @@aut@@ |
publishDateDaySort_date |
2003-07-01T00:00:00Z |
hierarchy_top_id |
129603481 |
dewey-sort |
0 |
id |
OLC2060885841 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060885841</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502214809.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1024726000159</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060885841</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1024726000159-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rybakov, A. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization in Identification of Logical-Probabilistic Risk Models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© MAIK “Nauka/Interperiodica” 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Identification of logical-probabilistic risk models with groups of incompatible events is investigated by the random search method. The integral multi-extremal multi-parametric aim function of the optimization problem in investigated as a function of the number of optimizations, maximal and minimal amplitudes of increments of parameters, initial value of the aim function, choice of identical or different amplitudes of increments for different parameters, and risk distribution. An effective method for finding the global extremum in identifying a logical-probabilistic risk model within reasonable computation time is developed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical Engineer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computation Time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Search Method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk Model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Solozhentsev, E. D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Automation and remote control</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1957</subfield><subfield code="g">64(2003), 7 vom: Juli, Seite 1063-1073</subfield><subfield code="w">(DE-627)129603481</subfield><subfield code="w">(DE-600)241725-X</subfield><subfield code="w">(DE-576)015097315</subfield><subfield code="x">0005-1179</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:7</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1063-1073</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1024726000159</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2003</subfield><subfield code="e">7</subfield><subfield code="c">07</subfield><subfield code="h">1063-1073</subfield></datafield></record></collection>
|
author |
Rybakov, A. V. |
spellingShingle |
Rybakov, A. V. ddc 000 misc Mechanical Engineer misc Computation Time misc System Theory misc Search Method misc Risk Model Optimization in Identification of Logical-Probabilistic Risk Models |
authorStr |
Rybakov, A. V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129603481 |
format |
Article |
dewey-ones |
000 - Computer science, information & general works 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0005-1179 |
topic_title |
000 620 VZ Optimization in Identification of Logical-Probabilistic Risk Models Mechanical Engineer Computation Time System Theory Search Method Risk Model |
topic |
ddc 000 misc Mechanical Engineer misc Computation Time misc System Theory misc Search Method misc Risk Model |
topic_unstemmed |
ddc 000 misc Mechanical Engineer misc Computation Time misc System Theory misc Search Method misc Risk Model |
topic_browse |
ddc 000 misc Mechanical Engineer misc Computation Time misc System Theory misc Search Method misc Risk Model |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Automation and remote control |
hierarchy_parent_id |
129603481 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
Automation and remote control |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129603481 (DE-600)241725-X (DE-576)015097315 |
title |
Optimization in Identification of Logical-Probabilistic Risk Models |
ctrlnum |
(DE-627)OLC2060885841 (DE-He213)A:1024726000159-p |
title_full |
Optimization in Identification of Logical-Probabilistic Risk Models |
author_sort |
Rybakov, A. V. |
journal |
Automation and remote control |
journalStr |
Automation and remote control |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2003 |
contenttype_str_mv |
txt |
container_start_page |
1063 |
author_browse |
Rybakov, A. V. Solozhentsev, E. D. |
container_volume |
64 |
class |
000 620 VZ |
format_se |
Aufsätze |
author-letter |
Rybakov, A. V. |
doi_str_mv |
10.1023/A:1024726000159 |
dewey-full |
000 620 |
title_sort |
optimization in identification of logical-probabilistic risk models |
title_auth |
Optimization in Identification of Logical-Probabilistic Risk Models |
abstract |
Abstract Identification of logical-probabilistic risk models with groups of incompatible events is investigated by the random search method. The integral multi-extremal multi-parametric aim function of the optimization problem in investigated as a function of the number of optimizations, maximal and minimal amplitudes of increments of parameters, initial value of the aim function, choice of identical or different amplitudes of increments for different parameters, and risk distribution. An effective method for finding the global extremum in identifying a logical-probabilistic risk model within reasonable computation time is developed. © MAIK “Nauka/Interperiodica” 2003 |
abstractGer |
Abstract Identification of logical-probabilistic risk models with groups of incompatible events is investigated by the random search method. The integral multi-extremal multi-parametric aim function of the optimization problem in investigated as a function of the number of optimizations, maximal and minimal amplitudes of increments of parameters, initial value of the aim function, choice of identical or different amplitudes of increments for different parameters, and risk distribution. An effective method for finding the global extremum in identifying a logical-probabilistic risk model within reasonable computation time is developed. © MAIK “Nauka/Interperiodica” 2003 |
abstract_unstemmed |
Abstract Identification of logical-probabilistic risk models with groups of incompatible events is investigated by the random search method. The integral multi-extremal multi-parametric aim function of the optimization problem in investigated as a function of the number of optimizations, maximal and minimal amplitudes of increments of parameters, initial value of the aim function, choice of identical or different amplitudes of increments for different parameters, and risk distribution. An effective method for finding the global extremum in identifying a logical-probabilistic risk model within reasonable computation time is developed. © MAIK “Nauka/Interperiodica” 2003 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_4116 GBV_ILN_4700 |
container_issue |
7 |
title_short |
Optimization in Identification of Logical-Probabilistic Risk Models |
url |
https://doi.org/10.1023/A:1024726000159 |
remote_bool |
false |
author2 |
Solozhentsev, E. D. |
author2Str |
Solozhentsev, E. D. |
ppnlink |
129603481 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1024726000159 |
up_date |
2024-07-04T02:23:09.131Z |
_version_ |
1803613413447827456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060885841</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502214809.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1024726000159</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060885841</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1024726000159-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rybakov, A. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization in Identification of Logical-Probabilistic Risk Models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© MAIK “Nauka/Interperiodica” 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Identification of logical-probabilistic risk models with groups of incompatible events is investigated by the random search method. The integral multi-extremal multi-parametric aim function of the optimization problem in investigated as a function of the number of optimizations, maximal and minimal amplitudes of increments of parameters, initial value of the aim function, choice of identical or different amplitudes of increments for different parameters, and risk distribution. An effective method for finding the global extremum in identifying a logical-probabilistic risk model within reasonable computation time is developed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical Engineer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computation Time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Search Method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk Model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Solozhentsev, E. D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Automation and remote control</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1957</subfield><subfield code="g">64(2003), 7 vom: Juli, Seite 1063-1073</subfield><subfield code="w">(DE-627)129603481</subfield><subfield code="w">(DE-600)241725-X</subfield><subfield code="w">(DE-576)015097315</subfield><subfield code="x">0005-1179</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:7</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1063-1073</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1024726000159</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2003</subfield><subfield code="e">7</subfield><subfield code="c">07</subfield><subfield code="h">1063-1073</subfield></datafield></record></collection>
|
score |
7.3985195 |