Strongly Subgame-Consistent Core in Stochastic Games
Abstract This paper investigates stochastic games on finite tree graphs. A given n-player normal-form game is defined at each node of a tree. Transition to a next node of the tree is random and depends on the strategy profile realized in a current game. We construct a cooperative solution of the gam...
Ausführliche Beschreibung
Autor*in: |
Parilina, E. M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Automation and remote control - Pleiades Publishing, 1957, 79(2018), 8 vom: Aug., Seite 1515-1527 |
---|---|
Übergeordnetes Werk: |
volume:79 ; year:2018 ; number:8 ; month:08 ; pages:1515-1527 |
Links: |
---|
DOI / URN: |
10.1134/S0005117918080118 |
---|
Katalog-ID: |
OLC2060913381 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2060913381 | ||
003 | DE-627 | ||
005 | 20230502215210.0 | ||
007 | tu | ||
008 | 200820s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0005117918080118 |2 doi | |
035 | |a (DE-627)OLC2060913381 | ||
035 | |a (DE-He213)S0005117918080118-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 000 |a 620 |q VZ |
100 | 1 | |a Parilina, E. M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Strongly Subgame-Consistent Core in Stochastic Games |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2018 | ||
520 | |a Abstract This paper investigates stochastic games on finite tree graphs. A given n-player normal-form game is defined at each node of a tree. Transition to a next node of the tree is random and depends on the strategy profile realized in a current game. We construct a cooperative solution of the game by maximizing the total expected payoff of the players. The core is used as the solution concept of the cooperative game. We introduce the definition of a strongly subgame-consistent (strongly time-consistent) core. Finally, we suggest a method for designing a cooperative distribution procedure of an imputation from the core that guarantees its strong subgame consistency. | ||
650 | 4 | |a stochastic game | |
650 | 4 | |a strong subgame consistency | |
650 | 4 | |a strong time consistency | |
650 | 4 | |a core | |
700 | 1 | |a Petrosyan, L. A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Automation and remote control |d Pleiades Publishing, 1957 |g 79(2018), 8 vom: Aug., Seite 1515-1527 |w (DE-627)129603481 |w (DE-600)241725-X |w (DE-576)015097315 |x 0005-1179 |7 nnns |
773 | 1 | 8 | |g volume:79 |g year:2018 |g number:8 |g month:08 |g pages:1515-1527 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0005117918080118 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 79 |j 2018 |e 8 |c 08 |h 1515-1527 |
author_variant |
e m p em emp l a p la lap |
---|---|
matchkey_str |
article:00051179:2018----::togyugmcnitncris |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1134/S0005117918080118 doi (DE-627)OLC2060913381 (DE-He213)S0005117918080118-p DE-627 ger DE-627 rakwb eng 000 620 VZ Parilina, E. M. verfasserin aut Strongly Subgame-Consistent Core in Stochastic Games 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2018 Abstract This paper investigates stochastic games on finite tree graphs. A given n-player normal-form game is defined at each node of a tree. Transition to a next node of the tree is random and depends on the strategy profile realized in a current game. We construct a cooperative solution of the game by maximizing the total expected payoff of the players. The core is used as the solution concept of the cooperative game. We introduce the definition of a strongly subgame-consistent (strongly time-consistent) core. Finally, we suggest a method for designing a cooperative distribution procedure of an imputation from the core that guarantees its strong subgame consistency. stochastic game strong subgame consistency strong time consistency core Petrosyan, L. A. aut Enthalten in Automation and remote control Pleiades Publishing, 1957 79(2018), 8 vom: Aug., Seite 1515-1527 (DE-627)129603481 (DE-600)241725-X (DE-576)015097315 0005-1179 nnns volume:79 year:2018 number:8 month:08 pages:1515-1527 https://doi.org/10.1134/S0005117918080118 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 79 2018 8 08 1515-1527 |
spelling |
10.1134/S0005117918080118 doi (DE-627)OLC2060913381 (DE-He213)S0005117918080118-p DE-627 ger DE-627 rakwb eng 000 620 VZ Parilina, E. M. verfasserin aut Strongly Subgame-Consistent Core in Stochastic Games 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2018 Abstract This paper investigates stochastic games on finite tree graphs. A given n-player normal-form game is defined at each node of a tree. Transition to a next node of the tree is random and depends on the strategy profile realized in a current game. We construct a cooperative solution of the game by maximizing the total expected payoff of the players. The core is used as the solution concept of the cooperative game. We introduce the definition of a strongly subgame-consistent (strongly time-consistent) core. Finally, we suggest a method for designing a cooperative distribution procedure of an imputation from the core that guarantees its strong subgame consistency. stochastic game strong subgame consistency strong time consistency core Petrosyan, L. A. aut Enthalten in Automation and remote control Pleiades Publishing, 1957 79(2018), 8 vom: Aug., Seite 1515-1527 (DE-627)129603481 (DE-600)241725-X (DE-576)015097315 0005-1179 nnns volume:79 year:2018 number:8 month:08 pages:1515-1527 https://doi.org/10.1134/S0005117918080118 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 79 2018 8 08 1515-1527 |
allfields_unstemmed |
10.1134/S0005117918080118 doi (DE-627)OLC2060913381 (DE-He213)S0005117918080118-p DE-627 ger DE-627 rakwb eng 000 620 VZ Parilina, E. M. verfasserin aut Strongly Subgame-Consistent Core in Stochastic Games 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2018 Abstract This paper investigates stochastic games on finite tree graphs. A given n-player normal-form game is defined at each node of a tree. Transition to a next node of the tree is random and depends on the strategy profile realized in a current game. We construct a cooperative solution of the game by maximizing the total expected payoff of the players. The core is used as the solution concept of the cooperative game. We introduce the definition of a strongly subgame-consistent (strongly time-consistent) core. Finally, we suggest a method for designing a cooperative distribution procedure of an imputation from the core that guarantees its strong subgame consistency. stochastic game strong subgame consistency strong time consistency core Petrosyan, L. A. aut Enthalten in Automation and remote control Pleiades Publishing, 1957 79(2018), 8 vom: Aug., Seite 1515-1527 (DE-627)129603481 (DE-600)241725-X (DE-576)015097315 0005-1179 nnns volume:79 year:2018 number:8 month:08 pages:1515-1527 https://doi.org/10.1134/S0005117918080118 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 79 2018 8 08 1515-1527 |
allfieldsGer |
10.1134/S0005117918080118 doi (DE-627)OLC2060913381 (DE-He213)S0005117918080118-p DE-627 ger DE-627 rakwb eng 000 620 VZ Parilina, E. M. verfasserin aut Strongly Subgame-Consistent Core in Stochastic Games 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2018 Abstract This paper investigates stochastic games on finite tree graphs. A given n-player normal-form game is defined at each node of a tree. Transition to a next node of the tree is random and depends on the strategy profile realized in a current game. We construct a cooperative solution of the game by maximizing the total expected payoff of the players. The core is used as the solution concept of the cooperative game. We introduce the definition of a strongly subgame-consistent (strongly time-consistent) core. Finally, we suggest a method for designing a cooperative distribution procedure of an imputation from the core that guarantees its strong subgame consistency. stochastic game strong subgame consistency strong time consistency core Petrosyan, L. A. aut Enthalten in Automation and remote control Pleiades Publishing, 1957 79(2018), 8 vom: Aug., Seite 1515-1527 (DE-627)129603481 (DE-600)241725-X (DE-576)015097315 0005-1179 nnns volume:79 year:2018 number:8 month:08 pages:1515-1527 https://doi.org/10.1134/S0005117918080118 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 79 2018 8 08 1515-1527 |
allfieldsSound |
10.1134/S0005117918080118 doi (DE-627)OLC2060913381 (DE-He213)S0005117918080118-p DE-627 ger DE-627 rakwb eng 000 620 VZ Parilina, E. M. verfasserin aut Strongly Subgame-Consistent Core in Stochastic Games 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2018 Abstract This paper investigates stochastic games on finite tree graphs. A given n-player normal-form game is defined at each node of a tree. Transition to a next node of the tree is random and depends on the strategy profile realized in a current game. We construct a cooperative solution of the game by maximizing the total expected payoff of the players. The core is used as the solution concept of the cooperative game. We introduce the definition of a strongly subgame-consistent (strongly time-consistent) core. Finally, we suggest a method for designing a cooperative distribution procedure of an imputation from the core that guarantees its strong subgame consistency. stochastic game strong subgame consistency strong time consistency core Petrosyan, L. A. aut Enthalten in Automation and remote control Pleiades Publishing, 1957 79(2018), 8 vom: Aug., Seite 1515-1527 (DE-627)129603481 (DE-600)241725-X (DE-576)015097315 0005-1179 nnns volume:79 year:2018 number:8 month:08 pages:1515-1527 https://doi.org/10.1134/S0005117918080118 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 79 2018 8 08 1515-1527 |
language |
English |
source |
Enthalten in Automation and remote control 79(2018), 8 vom: Aug., Seite 1515-1527 volume:79 year:2018 number:8 month:08 pages:1515-1527 |
sourceStr |
Enthalten in Automation and remote control 79(2018), 8 vom: Aug., Seite 1515-1527 volume:79 year:2018 number:8 month:08 pages:1515-1527 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
stochastic game strong subgame consistency strong time consistency core |
dewey-raw |
000 |
isfreeaccess_bool |
false |
container_title |
Automation and remote control |
authorswithroles_txt_mv |
Parilina, E. M. @@aut@@ Petrosyan, L. A. @@aut@@ |
publishDateDaySort_date |
2018-08-01T00:00:00Z |
hierarchy_top_id |
129603481 |
dewey-sort |
0 |
id |
OLC2060913381 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060913381</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502215210.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0005117918080118</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060913381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0005117918080118-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Parilina, E. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strongly Subgame-Consistent Core in Stochastic Games</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper investigates stochastic games on finite tree graphs. A given n-player normal-form game is defined at each node of a tree. Transition to a next node of the tree is random and depends on the strategy profile realized in a current game. We construct a cooperative solution of the game by maximizing the total expected payoff of the players. The core is used as the solution concept of the cooperative game. We introduce the definition of a strongly subgame-consistent (strongly time-consistent) core. Finally, we suggest a method for designing a cooperative distribution procedure of an imputation from the core that guarantees its strong subgame consistency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic game</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strong subgame consistency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strong time consistency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">core</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petrosyan, L. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Automation and remote control</subfield><subfield code="d">Pleiades Publishing, 1957</subfield><subfield code="g">79(2018), 8 vom: Aug., Seite 1515-1527</subfield><subfield code="w">(DE-627)129603481</subfield><subfield code="w">(DE-600)241725-X</subfield><subfield code="w">(DE-576)015097315</subfield><subfield code="x">0005-1179</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:79</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:8</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:1515-1527</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0005117918080118</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">79</subfield><subfield code="j">2018</subfield><subfield code="e">8</subfield><subfield code="c">08</subfield><subfield code="h">1515-1527</subfield></datafield></record></collection>
|
author |
Parilina, E. M. |
spellingShingle |
Parilina, E. M. ddc 000 misc stochastic game misc strong subgame consistency misc strong time consistency misc core Strongly Subgame-Consistent Core in Stochastic Games |
authorStr |
Parilina, E. M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129603481 |
format |
Article |
dewey-ones |
000 - Computer science, information & general works 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0005-1179 |
topic_title |
000 620 VZ Strongly Subgame-Consistent Core in Stochastic Games stochastic game strong subgame consistency strong time consistency core |
topic |
ddc 000 misc stochastic game misc strong subgame consistency misc strong time consistency misc core |
topic_unstemmed |
ddc 000 misc stochastic game misc strong subgame consistency misc strong time consistency misc core |
topic_browse |
ddc 000 misc stochastic game misc strong subgame consistency misc strong time consistency misc core |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Automation and remote control |
hierarchy_parent_id |
129603481 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
Automation and remote control |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129603481 (DE-600)241725-X (DE-576)015097315 |
title |
Strongly Subgame-Consistent Core in Stochastic Games |
ctrlnum |
(DE-627)OLC2060913381 (DE-He213)S0005117918080118-p |
title_full |
Strongly Subgame-Consistent Core in Stochastic Games |
author_sort |
Parilina, E. M. |
journal |
Automation and remote control |
journalStr |
Automation and remote control |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
1515 |
author_browse |
Parilina, E. M. Petrosyan, L. A. |
container_volume |
79 |
class |
000 620 VZ |
format_se |
Aufsätze |
author-letter |
Parilina, E. M. |
doi_str_mv |
10.1134/S0005117918080118 |
dewey-full |
000 620 |
title_sort |
strongly subgame-consistent core in stochastic games |
title_auth |
Strongly Subgame-Consistent Core in Stochastic Games |
abstract |
Abstract This paper investigates stochastic games on finite tree graphs. A given n-player normal-form game is defined at each node of a tree. Transition to a next node of the tree is random and depends on the strategy profile realized in a current game. We construct a cooperative solution of the game by maximizing the total expected payoff of the players. The core is used as the solution concept of the cooperative game. We introduce the definition of a strongly subgame-consistent (strongly time-consistent) core. Finally, we suggest a method for designing a cooperative distribution procedure of an imputation from the core that guarantees its strong subgame consistency. © Pleiades Publishing, Ltd. 2018 |
abstractGer |
Abstract This paper investigates stochastic games on finite tree graphs. A given n-player normal-form game is defined at each node of a tree. Transition to a next node of the tree is random and depends on the strategy profile realized in a current game. We construct a cooperative solution of the game by maximizing the total expected payoff of the players. The core is used as the solution concept of the cooperative game. We introduce the definition of a strongly subgame-consistent (strongly time-consistent) core. Finally, we suggest a method for designing a cooperative distribution procedure of an imputation from the core that guarantees its strong subgame consistency. © Pleiades Publishing, Ltd. 2018 |
abstract_unstemmed |
Abstract This paper investigates stochastic games on finite tree graphs. A given n-player normal-form game is defined at each node of a tree. Transition to a next node of the tree is random and depends on the strategy profile realized in a current game. We construct a cooperative solution of the game by maximizing the total expected payoff of the players. The core is used as the solution concept of the cooperative game. We introduce the definition of a strongly subgame-consistent (strongly time-consistent) core. Finally, we suggest a method for designing a cooperative distribution procedure of an imputation from the core that guarantees its strong subgame consistency. © Pleiades Publishing, Ltd. 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 |
container_issue |
8 |
title_short |
Strongly Subgame-Consistent Core in Stochastic Games |
url |
https://doi.org/10.1134/S0005117918080118 |
remote_bool |
false |
author2 |
Petrosyan, L. A. |
author2Str |
Petrosyan, L. A. |
ppnlink |
129603481 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0005117918080118 |
up_date |
2024-07-04T02:26:00.933Z |
_version_ |
1803613593597378560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060913381</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502215210.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0005117918080118</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060913381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0005117918080118-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Parilina, E. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strongly Subgame-Consistent Core in Stochastic Games</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper investigates stochastic games on finite tree graphs. A given n-player normal-form game is defined at each node of a tree. Transition to a next node of the tree is random and depends on the strategy profile realized in a current game. We construct a cooperative solution of the game by maximizing the total expected payoff of the players. The core is used as the solution concept of the cooperative game. We introduce the definition of a strongly subgame-consistent (strongly time-consistent) core. Finally, we suggest a method for designing a cooperative distribution procedure of an imputation from the core that guarantees its strong subgame consistency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic game</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strong subgame consistency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strong time consistency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">core</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petrosyan, L. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Automation and remote control</subfield><subfield code="d">Pleiades Publishing, 1957</subfield><subfield code="g">79(2018), 8 vom: Aug., Seite 1515-1527</subfield><subfield code="w">(DE-627)129603481</subfield><subfield code="w">(DE-600)241725-X</subfield><subfield code="w">(DE-576)015097315</subfield><subfield code="x">0005-1179</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:79</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:8</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:1515-1527</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0005117918080118</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">79</subfield><subfield code="j">2018</subfield><subfield code="e">8</subfield><subfield code="c">08</subfield><subfield code="h">1515-1527</subfield></datafield></record></collection>
|
score |
7.399805 |