A similarity model for maximum ground-level concentration in a freely convective atmospheric boundary layer
Abstract A model of buoyancy- and momentum-driven industrial plumes in a freely convective boundary layer is proposed. The development combines the Lagrangian similarity models of Yaglom for non-buoyant releases in the convective surface layer with the Scorer similarity model for industrial plumes....
Ausführliche Beschreibung
Autor*in: |
Kerman, Bryan R. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1979 |
---|
Schlagwörter: |
---|
Anmerkung: |
© D. Reidel Publishing Co. 1979 |
---|
Übergeordnetes Werk: |
Enthalten in: Boundary layer meteorology - Springer Netherlands, 1970, 16(1979), 4 vom: 01. Dez., Seite 395-408 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:1979 ; number:4 ; day:01 ; month:12 ; pages:395-408 |
Links: |
---|
DOI / URN: |
10.1007/BF03163559 |
---|
Katalog-ID: |
OLC2060923255 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2060923255 | ||
003 | DE-627 | ||
005 | 20230503004811.0 | ||
007 | tu | ||
008 | 200819s1979 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF03163559 |2 doi | |
035 | |a (DE-627)OLC2060923255 | ||
035 | |a (DE-He213)BF03163559-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 16,13 |2 ssgn | ||
100 | 1 | |a Kerman, Bryan R. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A similarity model for maximum ground-level concentration in a freely convective atmospheric boundary layer |
264 | 1 | |c 1979 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © D. Reidel Publishing Co. 1979 | ||
520 | |a Abstract A model of buoyancy- and momentum-driven industrial plumes in a freely convective boundary layer is proposed. The development combines the Lagrangian similarity models of Yaglom for non-buoyant releases in the convective surface layer with the Scorer similarity model for industrial plumes. Constraints on the validity of the extension of Yaglom’s model to the entire convective planetary boundary layer, arrived at by consideration of Batchelor’s formulation for diffusion in an inertial subrange, are often met in practice. The resulting formulation applies to an interval of time in which the entrainment of the atmosphere by the plume is balanced by the entrainment of the plume by the atmosphere. It is argued that during this interval, both maximum plume rise and ground contact are achieved. Further examination of the physical interrelationship with the Csanady-Briggs formulation serves to consolidate the model hypotheses, as well as to simplify the derivation of maximum ground-level concentrations. Experimental evidence is presented for the validity of the model, based on Moore’s published data. | ||
650 | 4 | |a Surface Heat Flux | |
650 | 4 | |a Convective Boundary Layer | |
650 | 4 | |a Ambient Turbulence | |
650 | 4 | |a Buoyancy Flux | |
650 | 4 | |a Entrainment Rate | |
773 | 0 | 8 | |i Enthalten in |t Boundary layer meteorology |d Springer Netherlands, 1970 |g 16(1979), 4 vom: 01. Dez., Seite 395-408 |w (DE-627)129610410 |w (DE-600)242879-9 |w (DE-576)015105679 |x 0006-8314 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:1979 |g number:4 |g day:01 |g month:12 |g pages:395-408 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF03163559 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_201 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 1979 |e 4 |b 01 |c 12 |h 395-408 |
author_variant |
b r k br brk |
---|---|
matchkey_str |
article:00068314:1979----::smlrtmdlomxmmrudeecnetainnfelcnetv |
hierarchy_sort_str |
1979 |
publishDate |
1979 |
allfields |
10.1007/BF03163559 doi (DE-627)OLC2060923255 (DE-He213)BF03163559-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Kerman, Bryan R. verfasserin aut A similarity model for maximum ground-level concentration in a freely convective atmospheric boundary layer 1979 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © D. Reidel Publishing Co. 1979 Abstract A model of buoyancy- and momentum-driven industrial plumes in a freely convective boundary layer is proposed. The development combines the Lagrangian similarity models of Yaglom for non-buoyant releases in the convective surface layer with the Scorer similarity model for industrial plumes. Constraints on the validity of the extension of Yaglom’s model to the entire convective planetary boundary layer, arrived at by consideration of Batchelor’s formulation for diffusion in an inertial subrange, are often met in practice. The resulting formulation applies to an interval of time in which the entrainment of the atmosphere by the plume is balanced by the entrainment of the plume by the atmosphere. It is argued that during this interval, both maximum plume rise and ground contact are achieved. Further examination of the physical interrelationship with the Csanady-Briggs formulation serves to consolidate the model hypotheses, as well as to simplify the derivation of maximum ground-level concentrations. Experimental evidence is presented for the validity of the model, based on Moore’s published data. Surface Heat Flux Convective Boundary Layer Ambient Turbulence Buoyancy Flux Entrainment Rate Enthalten in Boundary layer meteorology Springer Netherlands, 1970 16(1979), 4 vom: 01. Dez., Seite 395-408 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:16 year:1979 number:4 day:01 month:12 pages:395-408 https://doi.org/10.1007/BF03163559 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4700 AR 16 1979 4 01 12 395-408 |
spelling |
10.1007/BF03163559 doi (DE-627)OLC2060923255 (DE-He213)BF03163559-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Kerman, Bryan R. verfasserin aut A similarity model for maximum ground-level concentration in a freely convective atmospheric boundary layer 1979 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © D. Reidel Publishing Co. 1979 Abstract A model of buoyancy- and momentum-driven industrial plumes in a freely convective boundary layer is proposed. The development combines the Lagrangian similarity models of Yaglom for non-buoyant releases in the convective surface layer with the Scorer similarity model for industrial plumes. Constraints on the validity of the extension of Yaglom’s model to the entire convective planetary boundary layer, arrived at by consideration of Batchelor’s formulation for diffusion in an inertial subrange, are often met in practice. The resulting formulation applies to an interval of time in which the entrainment of the atmosphere by the plume is balanced by the entrainment of the plume by the atmosphere. It is argued that during this interval, both maximum plume rise and ground contact are achieved. Further examination of the physical interrelationship with the Csanady-Briggs formulation serves to consolidate the model hypotheses, as well as to simplify the derivation of maximum ground-level concentrations. Experimental evidence is presented for the validity of the model, based on Moore’s published data. Surface Heat Flux Convective Boundary Layer Ambient Turbulence Buoyancy Flux Entrainment Rate Enthalten in Boundary layer meteorology Springer Netherlands, 1970 16(1979), 4 vom: 01. Dez., Seite 395-408 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:16 year:1979 number:4 day:01 month:12 pages:395-408 https://doi.org/10.1007/BF03163559 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4700 AR 16 1979 4 01 12 395-408 |
allfields_unstemmed |
10.1007/BF03163559 doi (DE-627)OLC2060923255 (DE-He213)BF03163559-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Kerman, Bryan R. verfasserin aut A similarity model for maximum ground-level concentration in a freely convective atmospheric boundary layer 1979 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © D. Reidel Publishing Co. 1979 Abstract A model of buoyancy- and momentum-driven industrial plumes in a freely convective boundary layer is proposed. The development combines the Lagrangian similarity models of Yaglom for non-buoyant releases in the convective surface layer with the Scorer similarity model for industrial plumes. Constraints on the validity of the extension of Yaglom’s model to the entire convective planetary boundary layer, arrived at by consideration of Batchelor’s formulation for diffusion in an inertial subrange, are often met in practice. The resulting formulation applies to an interval of time in which the entrainment of the atmosphere by the plume is balanced by the entrainment of the plume by the atmosphere. It is argued that during this interval, both maximum plume rise and ground contact are achieved. Further examination of the physical interrelationship with the Csanady-Briggs formulation serves to consolidate the model hypotheses, as well as to simplify the derivation of maximum ground-level concentrations. Experimental evidence is presented for the validity of the model, based on Moore’s published data. Surface Heat Flux Convective Boundary Layer Ambient Turbulence Buoyancy Flux Entrainment Rate Enthalten in Boundary layer meteorology Springer Netherlands, 1970 16(1979), 4 vom: 01. Dez., Seite 395-408 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:16 year:1979 number:4 day:01 month:12 pages:395-408 https://doi.org/10.1007/BF03163559 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4700 AR 16 1979 4 01 12 395-408 |
allfieldsGer |
10.1007/BF03163559 doi (DE-627)OLC2060923255 (DE-He213)BF03163559-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Kerman, Bryan R. verfasserin aut A similarity model for maximum ground-level concentration in a freely convective atmospheric boundary layer 1979 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © D. Reidel Publishing Co. 1979 Abstract A model of buoyancy- and momentum-driven industrial plumes in a freely convective boundary layer is proposed. The development combines the Lagrangian similarity models of Yaglom for non-buoyant releases in the convective surface layer with the Scorer similarity model for industrial plumes. Constraints on the validity of the extension of Yaglom’s model to the entire convective planetary boundary layer, arrived at by consideration of Batchelor’s formulation for diffusion in an inertial subrange, are often met in practice. The resulting formulation applies to an interval of time in which the entrainment of the atmosphere by the plume is balanced by the entrainment of the plume by the atmosphere. It is argued that during this interval, both maximum plume rise and ground contact are achieved. Further examination of the physical interrelationship with the Csanady-Briggs formulation serves to consolidate the model hypotheses, as well as to simplify the derivation of maximum ground-level concentrations. Experimental evidence is presented for the validity of the model, based on Moore’s published data. Surface Heat Flux Convective Boundary Layer Ambient Turbulence Buoyancy Flux Entrainment Rate Enthalten in Boundary layer meteorology Springer Netherlands, 1970 16(1979), 4 vom: 01. Dez., Seite 395-408 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:16 year:1979 number:4 day:01 month:12 pages:395-408 https://doi.org/10.1007/BF03163559 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4700 AR 16 1979 4 01 12 395-408 |
allfieldsSound |
10.1007/BF03163559 doi (DE-627)OLC2060923255 (DE-He213)BF03163559-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Kerman, Bryan R. verfasserin aut A similarity model for maximum ground-level concentration in a freely convective atmospheric boundary layer 1979 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © D. Reidel Publishing Co. 1979 Abstract A model of buoyancy- and momentum-driven industrial plumes in a freely convective boundary layer is proposed. The development combines the Lagrangian similarity models of Yaglom for non-buoyant releases in the convective surface layer with the Scorer similarity model for industrial plumes. Constraints on the validity of the extension of Yaglom’s model to the entire convective planetary boundary layer, arrived at by consideration of Batchelor’s formulation for diffusion in an inertial subrange, are often met in practice. The resulting formulation applies to an interval of time in which the entrainment of the atmosphere by the plume is balanced by the entrainment of the plume by the atmosphere. It is argued that during this interval, both maximum plume rise and ground contact are achieved. Further examination of the physical interrelationship with the Csanady-Briggs formulation serves to consolidate the model hypotheses, as well as to simplify the derivation of maximum ground-level concentrations. Experimental evidence is presented for the validity of the model, based on Moore’s published data. Surface Heat Flux Convective Boundary Layer Ambient Turbulence Buoyancy Flux Entrainment Rate Enthalten in Boundary layer meteorology Springer Netherlands, 1970 16(1979), 4 vom: 01. Dez., Seite 395-408 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:16 year:1979 number:4 day:01 month:12 pages:395-408 https://doi.org/10.1007/BF03163559 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4700 AR 16 1979 4 01 12 395-408 |
language |
English |
source |
Enthalten in Boundary layer meteorology 16(1979), 4 vom: 01. Dez., Seite 395-408 volume:16 year:1979 number:4 day:01 month:12 pages:395-408 |
sourceStr |
Enthalten in Boundary layer meteorology 16(1979), 4 vom: 01. Dez., Seite 395-408 volume:16 year:1979 number:4 day:01 month:12 pages:395-408 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Surface Heat Flux Convective Boundary Layer Ambient Turbulence Buoyancy Flux Entrainment Rate |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Boundary layer meteorology |
authorswithroles_txt_mv |
Kerman, Bryan R. @@aut@@ |
publishDateDaySort_date |
1979-12-01T00:00:00Z |
hierarchy_top_id |
129610410 |
dewey-sort |
3550 |
id |
OLC2060923255 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060923255</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503004811.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1979 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF03163559</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060923255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF03163559-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kerman, Bryan R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A similarity model for maximum ground-level concentration in a freely convective atmospheric boundary layer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1979</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© D. Reidel Publishing Co. 1979</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A model of buoyancy- and momentum-driven industrial plumes in a freely convective boundary layer is proposed. The development combines the Lagrangian similarity models of Yaglom for non-buoyant releases in the convective surface layer with the Scorer similarity model for industrial plumes. Constraints on the validity of the extension of Yaglom’s model to the entire convective planetary boundary layer, arrived at by consideration of Batchelor’s formulation for diffusion in an inertial subrange, are often met in practice. The resulting formulation applies to an interval of time in which the entrainment of the atmosphere by the plume is balanced by the entrainment of the plume by the atmosphere. It is argued that during this interval, both maximum plume rise and ground contact are achieved. Further examination of the physical interrelationship with the Csanady-Briggs formulation serves to consolidate the model hypotheses, as well as to simplify the derivation of maximum ground-level concentrations. Experimental evidence is presented for the validity of the model, based on Moore’s published data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface Heat Flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convective Boundary Layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ambient Turbulence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buoyancy Flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entrainment Rate</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boundary layer meteorology</subfield><subfield code="d">Springer Netherlands, 1970</subfield><subfield code="g">16(1979), 4 vom: 01. Dez., Seite 395-408</subfield><subfield code="w">(DE-627)129610410</subfield><subfield code="w">(DE-600)242879-9</subfield><subfield code="w">(DE-576)015105679</subfield><subfield code="x">0006-8314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:1979</subfield><subfield code="g">number:4</subfield><subfield code="g">day:01</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:395-408</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF03163559</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_201</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">1979</subfield><subfield code="e">4</subfield><subfield code="b">01</subfield><subfield code="c">12</subfield><subfield code="h">395-408</subfield></datafield></record></collection>
|
author |
Kerman, Bryan R. |
spellingShingle |
Kerman, Bryan R. ddc 550 ssgn 16,13 misc Surface Heat Flux misc Convective Boundary Layer misc Ambient Turbulence misc Buoyancy Flux misc Entrainment Rate A similarity model for maximum ground-level concentration in a freely convective atmospheric boundary layer |
authorStr |
Kerman, Bryan R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129610410 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0006-8314 |
topic_title |
550 VZ 16,13 ssgn A similarity model for maximum ground-level concentration in a freely convective atmospheric boundary layer Surface Heat Flux Convective Boundary Layer Ambient Turbulence Buoyancy Flux Entrainment Rate |
topic |
ddc 550 ssgn 16,13 misc Surface Heat Flux misc Convective Boundary Layer misc Ambient Turbulence misc Buoyancy Flux misc Entrainment Rate |
topic_unstemmed |
ddc 550 ssgn 16,13 misc Surface Heat Flux misc Convective Boundary Layer misc Ambient Turbulence misc Buoyancy Flux misc Entrainment Rate |
topic_browse |
ddc 550 ssgn 16,13 misc Surface Heat Flux misc Convective Boundary Layer misc Ambient Turbulence misc Buoyancy Flux misc Entrainment Rate |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Boundary layer meteorology |
hierarchy_parent_id |
129610410 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Boundary layer meteorology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 |
title |
A similarity model for maximum ground-level concentration in a freely convective atmospheric boundary layer |
ctrlnum |
(DE-627)OLC2060923255 (DE-He213)BF03163559-p |
title_full |
A similarity model for maximum ground-level concentration in a freely convective atmospheric boundary layer |
author_sort |
Kerman, Bryan R. |
journal |
Boundary layer meteorology |
journalStr |
Boundary layer meteorology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1979 |
contenttype_str_mv |
txt |
container_start_page |
395 |
author_browse |
Kerman, Bryan R. |
container_volume |
16 |
class |
550 VZ 16,13 ssgn |
format_se |
Aufsätze |
author-letter |
Kerman, Bryan R. |
doi_str_mv |
10.1007/BF03163559 |
dewey-full |
550 |
title_sort |
a similarity model for maximum ground-level concentration in a freely convective atmospheric boundary layer |
title_auth |
A similarity model for maximum ground-level concentration in a freely convective atmospheric boundary layer |
abstract |
Abstract A model of buoyancy- and momentum-driven industrial plumes in a freely convective boundary layer is proposed. The development combines the Lagrangian similarity models of Yaglom for non-buoyant releases in the convective surface layer with the Scorer similarity model for industrial plumes. Constraints on the validity of the extension of Yaglom’s model to the entire convective planetary boundary layer, arrived at by consideration of Batchelor’s formulation for diffusion in an inertial subrange, are often met in practice. The resulting formulation applies to an interval of time in which the entrainment of the atmosphere by the plume is balanced by the entrainment of the plume by the atmosphere. It is argued that during this interval, both maximum plume rise and ground contact are achieved. Further examination of the physical interrelationship with the Csanady-Briggs formulation serves to consolidate the model hypotheses, as well as to simplify the derivation of maximum ground-level concentrations. Experimental evidence is presented for the validity of the model, based on Moore’s published data. © D. Reidel Publishing Co. 1979 |
abstractGer |
Abstract A model of buoyancy- and momentum-driven industrial plumes in a freely convective boundary layer is proposed. The development combines the Lagrangian similarity models of Yaglom for non-buoyant releases in the convective surface layer with the Scorer similarity model for industrial plumes. Constraints on the validity of the extension of Yaglom’s model to the entire convective planetary boundary layer, arrived at by consideration of Batchelor’s formulation for diffusion in an inertial subrange, are often met in practice. The resulting formulation applies to an interval of time in which the entrainment of the atmosphere by the plume is balanced by the entrainment of the plume by the atmosphere. It is argued that during this interval, both maximum plume rise and ground contact are achieved. Further examination of the physical interrelationship with the Csanady-Briggs formulation serves to consolidate the model hypotheses, as well as to simplify the derivation of maximum ground-level concentrations. Experimental evidence is presented for the validity of the model, based on Moore’s published data. © D. Reidel Publishing Co. 1979 |
abstract_unstemmed |
Abstract A model of buoyancy- and momentum-driven industrial plumes in a freely convective boundary layer is proposed. The development combines the Lagrangian similarity models of Yaglom for non-buoyant releases in the convective surface layer with the Scorer similarity model for industrial plumes. Constraints on the validity of the extension of Yaglom’s model to the entire convective planetary boundary layer, arrived at by consideration of Batchelor’s formulation for diffusion in an inertial subrange, are often met in practice. The resulting formulation applies to an interval of time in which the entrainment of the atmosphere by the plume is balanced by the entrainment of the plume by the atmosphere. It is argued that during this interval, both maximum plume rise and ground contact are achieved. Further examination of the physical interrelationship with the Csanady-Briggs formulation serves to consolidate the model hypotheses, as well as to simplify the derivation of maximum ground-level concentrations. Experimental evidence is presented for the validity of the model, based on Moore’s published data. © D. Reidel Publishing Co. 1979 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4700 |
container_issue |
4 |
title_short |
A similarity model for maximum ground-level concentration in a freely convective atmospheric boundary layer |
url |
https://doi.org/10.1007/BF03163559 |
remote_bool |
false |
ppnlink |
129610410 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF03163559 |
up_date |
2024-07-04T02:27:08.651Z |
_version_ |
1803613664603799552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060923255</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503004811.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1979 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF03163559</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060923255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF03163559-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kerman, Bryan R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A similarity model for maximum ground-level concentration in a freely convective atmospheric boundary layer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1979</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© D. Reidel Publishing Co. 1979</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A model of buoyancy- and momentum-driven industrial plumes in a freely convective boundary layer is proposed. The development combines the Lagrangian similarity models of Yaglom for non-buoyant releases in the convective surface layer with the Scorer similarity model for industrial plumes. Constraints on the validity of the extension of Yaglom’s model to the entire convective planetary boundary layer, arrived at by consideration of Batchelor’s formulation for diffusion in an inertial subrange, are often met in practice. The resulting formulation applies to an interval of time in which the entrainment of the atmosphere by the plume is balanced by the entrainment of the plume by the atmosphere. It is argued that during this interval, both maximum plume rise and ground contact are achieved. Further examination of the physical interrelationship with the Csanady-Briggs formulation serves to consolidate the model hypotheses, as well as to simplify the derivation of maximum ground-level concentrations. Experimental evidence is presented for the validity of the model, based on Moore’s published data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface Heat Flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convective Boundary Layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ambient Turbulence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buoyancy Flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entrainment Rate</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boundary layer meteorology</subfield><subfield code="d">Springer Netherlands, 1970</subfield><subfield code="g">16(1979), 4 vom: 01. Dez., Seite 395-408</subfield><subfield code="w">(DE-627)129610410</subfield><subfield code="w">(DE-600)242879-9</subfield><subfield code="w">(DE-576)015105679</subfield><subfield code="x">0006-8314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:1979</subfield><subfield code="g">number:4</subfield><subfield code="g">day:01</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:395-408</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF03163559</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_201</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">1979</subfield><subfield code="e">4</subfield><subfield code="b">01</subfield><subfield code="c">12</subfield><subfield code="h">395-408</subfield></datafield></record></collection>
|
score |
7.40129 |