Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of changes in wavelength and wind speed
Abstract This paper extends previous large-eddy simulations of the convective boundary layer over a surface with a spatially varying sensible heat flux. The heat flux variations are sinusoidal and one-dimensional. The wavelength is 1500 or 4500 m (corresponding to 1.3 and 3.8 times the boundary-laye...
Ausführliche Beschreibung
Autor*in: |
Hadfield, M. G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1992 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Kluwer Academic Publishers 1992 |
---|
Übergeordnetes Werk: |
Enthalten in: Boundary layer meteorology - Kluwer Academic Publishers, 1970, 58(1992), 4 vom: März, Seite 307-327 |
---|---|
Übergeordnetes Werk: |
volume:58 ; year:1992 ; number:4 ; month:03 ; pages:307-327 |
Links: |
---|
DOI / URN: |
10.1007/BF00120235 |
---|
Katalog-ID: |
OLC2060936136 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2060936136 | ||
003 | DE-627 | ||
005 | 20230503004903.0 | ||
007 | tu | ||
008 | 200819s1992 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF00120235 |2 doi | |
035 | |a (DE-627)OLC2060936136 | ||
035 | |a (DE-He213)BF00120235-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 16,13 |2 ssgn | ||
100 | 1 | |a Hadfield, M. G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of changes in wavelength and wind speed |
264 | 1 | |c 1992 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic Publishers 1992 | ||
520 | |a Abstract This paper extends previous large-eddy simulations of the convective boundary layer over a surface with a spatially varying sensible heat flux. The heat flux variations are sinusoidal and one-dimensional. The wavelength is 1500 or 4500 m (corresponding to 1.3 and 3.8 times the boundary-layer depth, respectively) and the wind speed is 0, 1 or 2 m $ s^{-1} $. In every case the heat flux variation drives a mean circulation. As expected, with zero wind there is ascent over the heat flux maxima. The strength of the circulation increases substantially with an increase in the wavelength of the perturbation. A light wind weakens the circulation drastically and moves it downwind. The circulation has a significant effect on the average concentration field from a simulated, elevated source. The heat flux variation modulates turbulence in the boundary layer. Turbulence is stronger (in several senses) above or downwind of the heat flux maxima than it is above or downwind of the heat flux minima. The effect remains significant even when the mean circulation is very weak. There are effects too on profiles of horizontal-average turbulence statistics. In most cases the effects would be undetectable in the atmosphere. We consider how the surface heat flux variations penetrate into the lower and middle boundary layer and propose that to a first approximation the process resembles passive scalar diffusion. | ||
650 | 4 | |a Boundary Layer | |
650 | 4 | |a Heat Flux | |
650 | 4 | |a Wind Speed | |
650 | 4 | |a Surface Heat Flux | |
650 | 4 | |a Convective Boundary Layer | |
700 | 1 | |a Cotton, W. R. |4 aut | |
700 | 1 | |a Pielke, R. A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Boundary layer meteorology |d Kluwer Academic Publishers, 1970 |g 58(1992), 4 vom: März, Seite 307-327 |w (DE-627)129610410 |w (DE-600)242879-9 |w (DE-576)015105679 |x 0006-8314 |7 nnns |
773 | 1 | 8 | |g volume:58 |g year:1992 |g number:4 |g month:03 |g pages:307-327 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF00120235 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_201 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 58 |j 1992 |e 4 |c 03 |h 307-327 |
author_variant |
m g h mg mgh w r c wr wrc r a p ra rap |
---|---|
matchkey_str |
article:00068314:1992----::agedsmltosfhralfrecruainiteovcieonayaepritefet |
hierarchy_sort_str |
1992 |
publishDate |
1992 |
allfields |
10.1007/BF00120235 doi (DE-627)OLC2060936136 (DE-He213)BF00120235-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Hadfield, M. G. verfasserin aut Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of changes in wavelength and wind speed 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1992 Abstract This paper extends previous large-eddy simulations of the convective boundary layer over a surface with a spatially varying sensible heat flux. The heat flux variations are sinusoidal and one-dimensional. The wavelength is 1500 or 4500 m (corresponding to 1.3 and 3.8 times the boundary-layer depth, respectively) and the wind speed is 0, 1 or 2 m $ s^{-1} $. In every case the heat flux variation drives a mean circulation. As expected, with zero wind there is ascent over the heat flux maxima. The strength of the circulation increases substantially with an increase in the wavelength of the perturbation. A light wind weakens the circulation drastically and moves it downwind. The circulation has a significant effect on the average concentration field from a simulated, elevated source. The heat flux variation modulates turbulence in the boundary layer. Turbulence is stronger (in several senses) above or downwind of the heat flux maxima than it is above or downwind of the heat flux minima. The effect remains significant even when the mean circulation is very weak. There are effects too on profiles of horizontal-average turbulence statistics. In most cases the effects would be undetectable in the atmosphere. We consider how the surface heat flux variations penetrate into the lower and middle boundary layer and propose that to a first approximation the process resembles passive scalar diffusion. Boundary Layer Heat Flux Wind Speed Surface Heat Flux Convective Boundary Layer Cotton, W. R. aut Pielke, R. A. aut Enthalten in Boundary layer meteorology Kluwer Academic Publishers, 1970 58(1992), 4 vom: März, Seite 307-327 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:58 year:1992 number:4 month:03 pages:307-327 https://doi.org/10.1007/BF00120235 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 AR 58 1992 4 03 307-327 |
spelling |
10.1007/BF00120235 doi (DE-627)OLC2060936136 (DE-He213)BF00120235-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Hadfield, M. G. verfasserin aut Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of changes in wavelength and wind speed 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1992 Abstract This paper extends previous large-eddy simulations of the convective boundary layer over a surface with a spatially varying sensible heat flux. The heat flux variations are sinusoidal and one-dimensional. The wavelength is 1500 or 4500 m (corresponding to 1.3 and 3.8 times the boundary-layer depth, respectively) and the wind speed is 0, 1 or 2 m $ s^{-1} $. In every case the heat flux variation drives a mean circulation. As expected, with zero wind there is ascent over the heat flux maxima. The strength of the circulation increases substantially with an increase in the wavelength of the perturbation. A light wind weakens the circulation drastically and moves it downwind. The circulation has a significant effect on the average concentration field from a simulated, elevated source. The heat flux variation modulates turbulence in the boundary layer. Turbulence is stronger (in several senses) above or downwind of the heat flux maxima than it is above or downwind of the heat flux minima. The effect remains significant even when the mean circulation is very weak. There are effects too on profiles of horizontal-average turbulence statistics. In most cases the effects would be undetectable in the atmosphere. We consider how the surface heat flux variations penetrate into the lower and middle boundary layer and propose that to a first approximation the process resembles passive scalar diffusion. Boundary Layer Heat Flux Wind Speed Surface Heat Flux Convective Boundary Layer Cotton, W. R. aut Pielke, R. A. aut Enthalten in Boundary layer meteorology Kluwer Academic Publishers, 1970 58(1992), 4 vom: März, Seite 307-327 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:58 year:1992 number:4 month:03 pages:307-327 https://doi.org/10.1007/BF00120235 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 AR 58 1992 4 03 307-327 |
allfields_unstemmed |
10.1007/BF00120235 doi (DE-627)OLC2060936136 (DE-He213)BF00120235-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Hadfield, M. G. verfasserin aut Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of changes in wavelength and wind speed 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1992 Abstract This paper extends previous large-eddy simulations of the convective boundary layer over a surface with a spatially varying sensible heat flux. The heat flux variations are sinusoidal and one-dimensional. The wavelength is 1500 or 4500 m (corresponding to 1.3 and 3.8 times the boundary-layer depth, respectively) and the wind speed is 0, 1 or 2 m $ s^{-1} $. In every case the heat flux variation drives a mean circulation. As expected, with zero wind there is ascent over the heat flux maxima. The strength of the circulation increases substantially with an increase in the wavelength of the perturbation. A light wind weakens the circulation drastically and moves it downwind. The circulation has a significant effect on the average concentration field from a simulated, elevated source. The heat flux variation modulates turbulence in the boundary layer. Turbulence is stronger (in several senses) above or downwind of the heat flux maxima than it is above or downwind of the heat flux minima. The effect remains significant even when the mean circulation is very weak. There are effects too on profiles of horizontal-average turbulence statistics. In most cases the effects would be undetectable in the atmosphere. We consider how the surface heat flux variations penetrate into the lower and middle boundary layer and propose that to a first approximation the process resembles passive scalar diffusion. Boundary Layer Heat Flux Wind Speed Surface Heat Flux Convective Boundary Layer Cotton, W. R. aut Pielke, R. A. aut Enthalten in Boundary layer meteorology Kluwer Academic Publishers, 1970 58(1992), 4 vom: März, Seite 307-327 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:58 year:1992 number:4 month:03 pages:307-327 https://doi.org/10.1007/BF00120235 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 AR 58 1992 4 03 307-327 |
allfieldsGer |
10.1007/BF00120235 doi (DE-627)OLC2060936136 (DE-He213)BF00120235-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Hadfield, M. G. verfasserin aut Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of changes in wavelength and wind speed 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1992 Abstract This paper extends previous large-eddy simulations of the convective boundary layer over a surface with a spatially varying sensible heat flux. The heat flux variations are sinusoidal and one-dimensional. The wavelength is 1500 or 4500 m (corresponding to 1.3 and 3.8 times the boundary-layer depth, respectively) and the wind speed is 0, 1 or 2 m $ s^{-1} $. In every case the heat flux variation drives a mean circulation. As expected, with zero wind there is ascent over the heat flux maxima. The strength of the circulation increases substantially with an increase in the wavelength of the perturbation. A light wind weakens the circulation drastically and moves it downwind. The circulation has a significant effect on the average concentration field from a simulated, elevated source. The heat flux variation modulates turbulence in the boundary layer. Turbulence is stronger (in several senses) above or downwind of the heat flux maxima than it is above or downwind of the heat flux minima. The effect remains significant even when the mean circulation is very weak. There are effects too on profiles of horizontal-average turbulence statistics. In most cases the effects would be undetectable in the atmosphere. We consider how the surface heat flux variations penetrate into the lower and middle boundary layer and propose that to a first approximation the process resembles passive scalar diffusion. Boundary Layer Heat Flux Wind Speed Surface Heat Flux Convective Boundary Layer Cotton, W. R. aut Pielke, R. A. aut Enthalten in Boundary layer meteorology Kluwer Academic Publishers, 1970 58(1992), 4 vom: März, Seite 307-327 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:58 year:1992 number:4 month:03 pages:307-327 https://doi.org/10.1007/BF00120235 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 AR 58 1992 4 03 307-327 |
allfieldsSound |
10.1007/BF00120235 doi (DE-627)OLC2060936136 (DE-He213)BF00120235-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Hadfield, M. G. verfasserin aut Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of changes in wavelength and wind speed 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1992 Abstract This paper extends previous large-eddy simulations of the convective boundary layer over a surface with a spatially varying sensible heat flux. The heat flux variations are sinusoidal and one-dimensional. The wavelength is 1500 or 4500 m (corresponding to 1.3 and 3.8 times the boundary-layer depth, respectively) and the wind speed is 0, 1 or 2 m $ s^{-1} $. In every case the heat flux variation drives a mean circulation. As expected, with zero wind there is ascent over the heat flux maxima. The strength of the circulation increases substantially with an increase in the wavelength of the perturbation. A light wind weakens the circulation drastically and moves it downwind. The circulation has a significant effect on the average concentration field from a simulated, elevated source. The heat flux variation modulates turbulence in the boundary layer. Turbulence is stronger (in several senses) above or downwind of the heat flux maxima than it is above or downwind of the heat flux minima. The effect remains significant even when the mean circulation is very weak. There are effects too on profiles of horizontal-average turbulence statistics. In most cases the effects would be undetectable in the atmosphere. We consider how the surface heat flux variations penetrate into the lower and middle boundary layer and propose that to a first approximation the process resembles passive scalar diffusion. Boundary Layer Heat Flux Wind Speed Surface Heat Flux Convective Boundary Layer Cotton, W. R. aut Pielke, R. A. aut Enthalten in Boundary layer meteorology Kluwer Academic Publishers, 1970 58(1992), 4 vom: März, Seite 307-327 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:58 year:1992 number:4 month:03 pages:307-327 https://doi.org/10.1007/BF00120235 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 AR 58 1992 4 03 307-327 |
language |
English |
source |
Enthalten in Boundary layer meteorology 58(1992), 4 vom: März, Seite 307-327 volume:58 year:1992 number:4 month:03 pages:307-327 |
sourceStr |
Enthalten in Boundary layer meteorology 58(1992), 4 vom: März, Seite 307-327 volume:58 year:1992 number:4 month:03 pages:307-327 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Boundary Layer Heat Flux Wind Speed Surface Heat Flux Convective Boundary Layer |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Boundary layer meteorology |
authorswithroles_txt_mv |
Hadfield, M. G. @@aut@@ Cotton, W. R. @@aut@@ Pielke, R. A. @@aut@@ |
publishDateDaySort_date |
1992-03-01T00:00:00Z |
hierarchy_top_id |
129610410 |
dewey-sort |
3550 |
id |
OLC2060936136 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060936136</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503004903.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1992 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00120235</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060936136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00120235-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hadfield, M. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of changes in wavelength and wind speed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1992</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 1992</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper extends previous large-eddy simulations of the convective boundary layer over a surface with a spatially varying sensible heat flux. The heat flux variations are sinusoidal and one-dimensional. The wavelength is 1500 or 4500 m (corresponding to 1.3 and 3.8 times the boundary-layer depth, respectively) and the wind speed is 0, 1 or 2 m $ s^{-1} $. In every case the heat flux variation drives a mean circulation. As expected, with zero wind there is ascent over the heat flux maxima. The strength of the circulation increases substantially with an increase in the wavelength of the perturbation. A light wind weakens the circulation drastically and moves it downwind. The circulation has a significant effect on the average concentration field from a simulated, elevated source. The heat flux variation modulates turbulence in the boundary layer. Turbulence is stronger (in several senses) above or downwind of the heat flux maxima than it is above or downwind of the heat flux minima. The effect remains significant even when the mean circulation is very weak. There are effects too on profiles of horizontal-average turbulence statistics. In most cases the effects would be undetectable in the atmosphere. We consider how the surface heat flux variations penetrate into the lower and middle boundary layer and propose that to a first approximation the process resembles passive scalar diffusion.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary Layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat Flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind Speed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface Heat Flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convective Boundary Layer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cotton, W. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pielke, R. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boundary layer meteorology</subfield><subfield code="d">Kluwer Academic Publishers, 1970</subfield><subfield code="g">58(1992), 4 vom: März, Seite 307-327</subfield><subfield code="w">(DE-627)129610410</subfield><subfield code="w">(DE-600)242879-9</subfield><subfield code="w">(DE-576)015105679</subfield><subfield code="x">0006-8314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:1992</subfield><subfield code="g">number:4</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:307-327</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00120235</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_201</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">1992</subfield><subfield code="e">4</subfield><subfield code="c">03</subfield><subfield code="h">307-327</subfield></datafield></record></collection>
|
author |
Hadfield, M. G. |
spellingShingle |
Hadfield, M. G. ddc 550 ssgn 16,13 misc Boundary Layer misc Heat Flux misc Wind Speed misc Surface Heat Flux misc Convective Boundary Layer Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of changes in wavelength and wind speed |
authorStr |
Hadfield, M. G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129610410 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0006-8314 |
topic_title |
550 VZ 16,13 ssgn Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of changes in wavelength and wind speed Boundary Layer Heat Flux Wind Speed Surface Heat Flux Convective Boundary Layer |
topic |
ddc 550 ssgn 16,13 misc Boundary Layer misc Heat Flux misc Wind Speed misc Surface Heat Flux misc Convective Boundary Layer |
topic_unstemmed |
ddc 550 ssgn 16,13 misc Boundary Layer misc Heat Flux misc Wind Speed misc Surface Heat Flux misc Convective Boundary Layer |
topic_browse |
ddc 550 ssgn 16,13 misc Boundary Layer misc Heat Flux misc Wind Speed misc Surface Heat Flux misc Convective Boundary Layer |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Boundary layer meteorology |
hierarchy_parent_id |
129610410 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Boundary layer meteorology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 |
title |
Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of changes in wavelength and wind speed |
ctrlnum |
(DE-627)OLC2060936136 (DE-He213)BF00120235-p |
title_full |
Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of changes in wavelength and wind speed |
author_sort |
Hadfield, M. G. |
journal |
Boundary layer meteorology |
journalStr |
Boundary layer meteorology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1992 |
contenttype_str_mv |
txt |
container_start_page |
307 |
author_browse |
Hadfield, M. G. Cotton, W. R. Pielke, R. A. |
container_volume |
58 |
class |
550 VZ 16,13 ssgn |
format_se |
Aufsätze |
author-letter |
Hadfield, M. G. |
doi_str_mv |
10.1007/BF00120235 |
dewey-full |
550 |
title_sort |
large-eddy simulations of thermally forced circulations in the convective boundary layer. part ii: the effect of changes in wavelength and wind speed |
title_auth |
Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of changes in wavelength and wind speed |
abstract |
Abstract This paper extends previous large-eddy simulations of the convective boundary layer over a surface with a spatially varying sensible heat flux. The heat flux variations are sinusoidal and one-dimensional. The wavelength is 1500 or 4500 m (corresponding to 1.3 and 3.8 times the boundary-layer depth, respectively) and the wind speed is 0, 1 or 2 m $ s^{-1} $. In every case the heat flux variation drives a mean circulation. As expected, with zero wind there is ascent over the heat flux maxima. The strength of the circulation increases substantially with an increase in the wavelength of the perturbation. A light wind weakens the circulation drastically and moves it downwind. The circulation has a significant effect on the average concentration field from a simulated, elevated source. The heat flux variation modulates turbulence in the boundary layer. Turbulence is stronger (in several senses) above or downwind of the heat flux maxima than it is above or downwind of the heat flux minima. The effect remains significant even when the mean circulation is very weak. There are effects too on profiles of horizontal-average turbulence statistics. In most cases the effects would be undetectable in the atmosphere. We consider how the surface heat flux variations penetrate into the lower and middle boundary layer and propose that to a first approximation the process resembles passive scalar diffusion. © Kluwer Academic Publishers 1992 |
abstractGer |
Abstract This paper extends previous large-eddy simulations of the convective boundary layer over a surface with a spatially varying sensible heat flux. The heat flux variations are sinusoidal and one-dimensional. The wavelength is 1500 or 4500 m (corresponding to 1.3 and 3.8 times the boundary-layer depth, respectively) and the wind speed is 0, 1 or 2 m $ s^{-1} $. In every case the heat flux variation drives a mean circulation. As expected, with zero wind there is ascent over the heat flux maxima. The strength of the circulation increases substantially with an increase in the wavelength of the perturbation. A light wind weakens the circulation drastically and moves it downwind. The circulation has a significant effect on the average concentration field from a simulated, elevated source. The heat flux variation modulates turbulence in the boundary layer. Turbulence is stronger (in several senses) above or downwind of the heat flux maxima than it is above or downwind of the heat flux minima. The effect remains significant even when the mean circulation is very weak. There are effects too on profiles of horizontal-average turbulence statistics. In most cases the effects would be undetectable in the atmosphere. We consider how the surface heat flux variations penetrate into the lower and middle boundary layer and propose that to a first approximation the process resembles passive scalar diffusion. © Kluwer Academic Publishers 1992 |
abstract_unstemmed |
Abstract This paper extends previous large-eddy simulations of the convective boundary layer over a surface with a spatially varying sensible heat flux. The heat flux variations are sinusoidal and one-dimensional. The wavelength is 1500 or 4500 m (corresponding to 1.3 and 3.8 times the boundary-layer depth, respectively) and the wind speed is 0, 1 or 2 m $ s^{-1} $. In every case the heat flux variation drives a mean circulation. As expected, with zero wind there is ascent over the heat flux maxima. The strength of the circulation increases substantially with an increase in the wavelength of the perturbation. A light wind weakens the circulation drastically and moves it downwind. The circulation has a significant effect on the average concentration field from a simulated, elevated source. The heat flux variation modulates turbulence in the boundary layer. Turbulence is stronger (in several senses) above or downwind of the heat flux maxima than it is above or downwind of the heat flux minima. The effect remains significant even when the mean circulation is very weak. There are effects too on profiles of horizontal-average turbulence statistics. In most cases the effects would be undetectable in the atmosphere. We consider how the surface heat flux variations penetrate into the lower and middle boundary layer and propose that to a first approximation the process resembles passive scalar diffusion. © Kluwer Academic Publishers 1992 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of changes in wavelength and wind speed |
url |
https://doi.org/10.1007/BF00120235 |
remote_bool |
false |
author2 |
Cotton, W. R. Pielke, R. A. |
author2Str |
Cotton, W. R. Pielke, R. A. |
ppnlink |
129610410 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF00120235 |
up_date |
2024-07-04T02:28:45.307Z |
_version_ |
1803613765956009984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060936136</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503004903.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1992 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00120235</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060936136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00120235-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hadfield, M. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of changes in wavelength and wind speed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1992</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 1992</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper extends previous large-eddy simulations of the convective boundary layer over a surface with a spatially varying sensible heat flux. The heat flux variations are sinusoidal and one-dimensional. The wavelength is 1500 or 4500 m (corresponding to 1.3 and 3.8 times the boundary-layer depth, respectively) and the wind speed is 0, 1 or 2 m $ s^{-1} $. In every case the heat flux variation drives a mean circulation. As expected, with zero wind there is ascent over the heat flux maxima. The strength of the circulation increases substantially with an increase in the wavelength of the perturbation. A light wind weakens the circulation drastically and moves it downwind. The circulation has a significant effect on the average concentration field from a simulated, elevated source. The heat flux variation modulates turbulence in the boundary layer. Turbulence is stronger (in several senses) above or downwind of the heat flux maxima than it is above or downwind of the heat flux minima. The effect remains significant even when the mean circulation is very weak. There are effects too on profiles of horizontal-average turbulence statistics. In most cases the effects would be undetectable in the atmosphere. We consider how the surface heat flux variations penetrate into the lower and middle boundary layer and propose that to a first approximation the process resembles passive scalar diffusion.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary Layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat Flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind Speed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface Heat Flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convective Boundary Layer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cotton, W. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pielke, R. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boundary layer meteorology</subfield><subfield code="d">Kluwer Academic Publishers, 1970</subfield><subfield code="g">58(1992), 4 vom: März, Seite 307-327</subfield><subfield code="w">(DE-627)129610410</subfield><subfield code="w">(DE-600)242879-9</subfield><subfield code="w">(DE-576)015105679</subfield><subfield code="x">0006-8314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:1992</subfield><subfield code="g">number:4</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:307-327</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00120235</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_201</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">1992</subfield><subfield code="e">4</subfield><subfield code="c">03</subfield><subfield code="h">307-327</subfield></datafield></record></collection>
|
score |
7.40077 |