Passive scalar diffusion from surface sources in the convective boundary layer
Abstract We examine vertical and horizontal diffusion of a passive scalar puff from a surface point source in a convective boundary layer (CBL). Numerical results are presented from a large-eddy simulation (LES) with embedded subgrid Lagrangian particle simulation (LPS). There is good agreement in m...
Ausführliche Beschreibung
Autor*in: |
Hadfield, M. G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1994 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Kluwer Academic Publishers 1994 |
---|
Übergeordnetes Werk: |
Enthalten in: Boundary layer meteorology - Kluwer Academic Publishers, 1970, 69(1994), 4 vom: Juni, Seite 417-448 |
---|---|
Übergeordnetes Werk: |
volume:69 ; year:1994 ; number:4 ; month:06 ; pages:417-448 |
Links: |
---|
DOI / URN: |
10.1007/BF00718128 |
---|
Katalog-ID: |
OLC2060938856 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2060938856 | ||
003 | DE-627 | ||
005 | 20230503004915.0 | ||
007 | tu | ||
008 | 200819s1994 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF00718128 |2 doi | |
035 | |a (DE-627)OLC2060938856 | ||
035 | |a (DE-He213)BF00718128-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 16,13 |2 ssgn | ||
100 | 1 | |a Hadfield, M. G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Passive scalar diffusion from surface sources in the convective boundary layer |
264 | 1 | |c 1994 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic Publishers 1994 | ||
520 | |a Abstract We examine vertical and horizontal diffusion of a passive scalar puff from a surface point source in a convective boundary layer (CBL). Numerical results are presented from a large-eddy simulation (LES) with embedded subgrid Lagrangian particle simulation (LPS). There is good agreement in most respects with previous laboratory and numerical studies. Analytical approximations for the concentration, horizontal flux and vertical flux are found to work reasonably well; they are based on the assumption that the concentration follows a Gaussian function in the horizontal and vertical, and that the dimensionless width and height scales of the puff follow simple functions of time. Fluxes and concentration gradients are related through a continuity relationship, without the need for an eddy diffusivity assumption. The instantaneous, point-source fields can be integrated for any source geometry. We compare predictions from the LES/LPS model for a sinusoidal surface flux with previous results from an LES with sinusoidal buoyancy flux and confirm that the buoyancy perturbations diffuse like a passive scalar. We also consider a continuous point source and derive footprint functions for vertical flux measurements above the surface layer. | ||
650 | 4 | |a Convective Boundary Layer | |
650 | 4 | |a Eddy Diffusivity | |
650 | 4 | |a Passive Scalar | |
650 | 4 | |a Vertical Flux | |
650 | 4 | |a Buoyancy Flux | |
773 | 0 | 8 | |i Enthalten in |t Boundary layer meteorology |d Kluwer Academic Publishers, 1970 |g 69(1994), 4 vom: Juni, Seite 417-448 |w (DE-627)129610410 |w (DE-600)242879-9 |w (DE-576)015105679 |x 0006-8314 |7 nnns |
773 | 1 | 8 | |g volume:69 |g year:1994 |g number:4 |g month:06 |g pages:417-448 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF00718128 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_201 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 69 |j 1994 |e 4 |c 06 |h 417-448 |
author_variant |
m g h mg mgh |
---|---|
matchkey_str |
article:00068314:1994----::asvsaadfuinrmufcsucsnhcne |
hierarchy_sort_str |
1994 |
publishDate |
1994 |
allfields |
10.1007/BF00718128 doi (DE-627)OLC2060938856 (DE-He213)BF00718128-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Hadfield, M. G. verfasserin aut Passive scalar diffusion from surface sources in the convective boundary layer 1994 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1994 Abstract We examine vertical and horizontal diffusion of a passive scalar puff from a surface point source in a convective boundary layer (CBL). Numerical results are presented from a large-eddy simulation (LES) with embedded subgrid Lagrangian particle simulation (LPS). There is good agreement in most respects with previous laboratory and numerical studies. Analytical approximations for the concentration, horizontal flux and vertical flux are found to work reasonably well; they are based on the assumption that the concentration follows a Gaussian function in the horizontal and vertical, and that the dimensionless width and height scales of the puff follow simple functions of time. Fluxes and concentration gradients are related through a continuity relationship, without the need for an eddy diffusivity assumption. The instantaneous, point-source fields can be integrated for any source geometry. We compare predictions from the LES/LPS model for a sinusoidal surface flux with previous results from an LES with sinusoidal buoyancy flux and confirm that the buoyancy perturbations diffuse like a passive scalar. We also consider a continuous point source and derive footprint functions for vertical flux measurements above the surface layer. Convective Boundary Layer Eddy Diffusivity Passive Scalar Vertical Flux Buoyancy Flux Enthalten in Boundary layer meteorology Kluwer Academic Publishers, 1970 69(1994), 4 vom: Juni, Seite 417-448 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:69 year:1994 number:4 month:06 pages:417-448 https://doi.org/10.1007/BF00718128 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 AR 69 1994 4 06 417-448 |
spelling |
10.1007/BF00718128 doi (DE-627)OLC2060938856 (DE-He213)BF00718128-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Hadfield, M. G. verfasserin aut Passive scalar diffusion from surface sources in the convective boundary layer 1994 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1994 Abstract We examine vertical and horizontal diffusion of a passive scalar puff from a surface point source in a convective boundary layer (CBL). Numerical results are presented from a large-eddy simulation (LES) with embedded subgrid Lagrangian particle simulation (LPS). There is good agreement in most respects with previous laboratory and numerical studies. Analytical approximations for the concentration, horizontal flux and vertical flux are found to work reasonably well; they are based on the assumption that the concentration follows a Gaussian function in the horizontal and vertical, and that the dimensionless width and height scales of the puff follow simple functions of time. Fluxes and concentration gradients are related through a continuity relationship, without the need for an eddy diffusivity assumption. The instantaneous, point-source fields can be integrated for any source geometry. We compare predictions from the LES/LPS model for a sinusoidal surface flux with previous results from an LES with sinusoidal buoyancy flux and confirm that the buoyancy perturbations diffuse like a passive scalar. We also consider a continuous point source and derive footprint functions for vertical flux measurements above the surface layer. Convective Boundary Layer Eddy Diffusivity Passive Scalar Vertical Flux Buoyancy Flux Enthalten in Boundary layer meteorology Kluwer Academic Publishers, 1970 69(1994), 4 vom: Juni, Seite 417-448 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:69 year:1994 number:4 month:06 pages:417-448 https://doi.org/10.1007/BF00718128 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 AR 69 1994 4 06 417-448 |
allfields_unstemmed |
10.1007/BF00718128 doi (DE-627)OLC2060938856 (DE-He213)BF00718128-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Hadfield, M. G. verfasserin aut Passive scalar diffusion from surface sources in the convective boundary layer 1994 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1994 Abstract We examine vertical and horizontal diffusion of a passive scalar puff from a surface point source in a convective boundary layer (CBL). Numerical results are presented from a large-eddy simulation (LES) with embedded subgrid Lagrangian particle simulation (LPS). There is good agreement in most respects with previous laboratory and numerical studies. Analytical approximations for the concentration, horizontal flux and vertical flux are found to work reasonably well; they are based on the assumption that the concentration follows a Gaussian function in the horizontal and vertical, and that the dimensionless width and height scales of the puff follow simple functions of time. Fluxes and concentration gradients are related through a continuity relationship, without the need for an eddy diffusivity assumption. The instantaneous, point-source fields can be integrated for any source geometry. We compare predictions from the LES/LPS model for a sinusoidal surface flux with previous results from an LES with sinusoidal buoyancy flux and confirm that the buoyancy perturbations diffuse like a passive scalar. We also consider a continuous point source and derive footprint functions for vertical flux measurements above the surface layer. Convective Boundary Layer Eddy Diffusivity Passive Scalar Vertical Flux Buoyancy Flux Enthalten in Boundary layer meteorology Kluwer Academic Publishers, 1970 69(1994), 4 vom: Juni, Seite 417-448 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:69 year:1994 number:4 month:06 pages:417-448 https://doi.org/10.1007/BF00718128 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 AR 69 1994 4 06 417-448 |
allfieldsGer |
10.1007/BF00718128 doi (DE-627)OLC2060938856 (DE-He213)BF00718128-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Hadfield, M. G. verfasserin aut Passive scalar diffusion from surface sources in the convective boundary layer 1994 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1994 Abstract We examine vertical and horizontal diffusion of a passive scalar puff from a surface point source in a convective boundary layer (CBL). Numerical results are presented from a large-eddy simulation (LES) with embedded subgrid Lagrangian particle simulation (LPS). There is good agreement in most respects with previous laboratory and numerical studies. Analytical approximations for the concentration, horizontal flux and vertical flux are found to work reasonably well; they are based on the assumption that the concentration follows a Gaussian function in the horizontal and vertical, and that the dimensionless width and height scales of the puff follow simple functions of time. Fluxes and concentration gradients are related through a continuity relationship, without the need for an eddy diffusivity assumption. The instantaneous, point-source fields can be integrated for any source geometry. We compare predictions from the LES/LPS model for a sinusoidal surface flux with previous results from an LES with sinusoidal buoyancy flux and confirm that the buoyancy perturbations diffuse like a passive scalar. We also consider a continuous point source and derive footprint functions for vertical flux measurements above the surface layer. Convective Boundary Layer Eddy Diffusivity Passive Scalar Vertical Flux Buoyancy Flux Enthalten in Boundary layer meteorology Kluwer Academic Publishers, 1970 69(1994), 4 vom: Juni, Seite 417-448 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:69 year:1994 number:4 month:06 pages:417-448 https://doi.org/10.1007/BF00718128 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 AR 69 1994 4 06 417-448 |
allfieldsSound |
10.1007/BF00718128 doi (DE-627)OLC2060938856 (DE-He213)BF00718128-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Hadfield, M. G. verfasserin aut Passive scalar diffusion from surface sources in the convective boundary layer 1994 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1994 Abstract We examine vertical and horizontal diffusion of a passive scalar puff from a surface point source in a convective boundary layer (CBL). Numerical results are presented from a large-eddy simulation (LES) with embedded subgrid Lagrangian particle simulation (LPS). There is good agreement in most respects with previous laboratory and numerical studies. Analytical approximations for the concentration, horizontal flux and vertical flux are found to work reasonably well; they are based on the assumption that the concentration follows a Gaussian function in the horizontal and vertical, and that the dimensionless width and height scales of the puff follow simple functions of time. Fluxes and concentration gradients are related through a continuity relationship, without the need for an eddy diffusivity assumption. The instantaneous, point-source fields can be integrated for any source geometry. We compare predictions from the LES/LPS model for a sinusoidal surface flux with previous results from an LES with sinusoidal buoyancy flux and confirm that the buoyancy perturbations diffuse like a passive scalar. We also consider a continuous point source and derive footprint functions for vertical flux measurements above the surface layer. Convective Boundary Layer Eddy Diffusivity Passive Scalar Vertical Flux Buoyancy Flux Enthalten in Boundary layer meteorology Kluwer Academic Publishers, 1970 69(1994), 4 vom: Juni, Seite 417-448 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:69 year:1994 number:4 month:06 pages:417-448 https://doi.org/10.1007/BF00718128 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 AR 69 1994 4 06 417-448 |
language |
English |
source |
Enthalten in Boundary layer meteorology 69(1994), 4 vom: Juni, Seite 417-448 volume:69 year:1994 number:4 month:06 pages:417-448 |
sourceStr |
Enthalten in Boundary layer meteorology 69(1994), 4 vom: Juni, Seite 417-448 volume:69 year:1994 number:4 month:06 pages:417-448 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Convective Boundary Layer Eddy Diffusivity Passive Scalar Vertical Flux Buoyancy Flux |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Boundary layer meteorology |
authorswithroles_txt_mv |
Hadfield, M. G. @@aut@@ |
publishDateDaySort_date |
1994-06-01T00:00:00Z |
hierarchy_top_id |
129610410 |
dewey-sort |
3550 |
id |
OLC2060938856 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060938856</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503004915.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1994 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00718128</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060938856</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00718128-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hadfield, M. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Passive scalar diffusion from surface sources in the convective boundary layer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1994</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 1994</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We examine vertical and horizontal diffusion of a passive scalar puff from a surface point source in a convective boundary layer (CBL). Numerical results are presented from a large-eddy simulation (LES) with embedded subgrid Lagrangian particle simulation (LPS). There is good agreement in most respects with previous laboratory and numerical studies. Analytical approximations for the concentration, horizontal flux and vertical flux are found to work reasonably well; they are based on the assumption that the concentration follows a Gaussian function in the horizontal and vertical, and that the dimensionless width and height scales of the puff follow simple functions of time. Fluxes and concentration gradients are related through a continuity relationship, without the need for an eddy diffusivity assumption. The instantaneous, point-source fields can be integrated for any source geometry. We compare predictions from the LES/LPS model for a sinusoidal surface flux with previous results from an LES with sinusoidal buoyancy flux and confirm that the buoyancy perturbations diffuse like a passive scalar. We also consider a continuous point source and derive footprint functions for vertical flux measurements above the surface layer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convective Boundary Layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eddy Diffusivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Passive Scalar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertical Flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buoyancy Flux</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boundary layer meteorology</subfield><subfield code="d">Kluwer Academic Publishers, 1970</subfield><subfield code="g">69(1994), 4 vom: Juni, Seite 417-448</subfield><subfield code="w">(DE-627)129610410</subfield><subfield code="w">(DE-600)242879-9</subfield><subfield code="w">(DE-576)015105679</subfield><subfield code="x">0006-8314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:69</subfield><subfield code="g">year:1994</subfield><subfield code="g">number:4</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:417-448</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00718128</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_201</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">69</subfield><subfield code="j">1994</subfield><subfield code="e">4</subfield><subfield code="c">06</subfield><subfield code="h">417-448</subfield></datafield></record></collection>
|
author |
Hadfield, M. G. |
spellingShingle |
Hadfield, M. G. ddc 550 ssgn 16,13 misc Convective Boundary Layer misc Eddy Diffusivity misc Passive Scalar misc Vertical Flux misc Buoyancy Flux Passive scalar diffusion from surface sources in the convective boundary layer |
authorStr |
Hadfield, M. G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129610410 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0006-8314 |
topic_title |
550 VZ 16,13 ssgn Passive scalar diffusion from surface sources in the convective boundary layer Convective Boundary Layer Eddy Diffusivity Passive Scalar Vertical Flux Buoyancy Flux |
topic |
ddc 550 ssgn 16,13 misc Convective Boundary Layer misc Eddy Diffusivity misc Passive Scalar misc Vertical Flux misc Buoyancy Flux |
topic_unstemmed |
ddc 550 ssgn 16,13 misc Convective Boundary Layer misc Eddy Diffusivity misc Passive Scalar misc Vertical Flux misc Buoyancy Flux |
topic_browse |
ddc 550 ssgn 16,13 misc Convective Boundary Layer misc Eddy Diffusivity misc Passive Scalar misc Vertical Flux misc Buoyancy Flux |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Boundary layer meteorology |
hierarchy_parent_id |
129610410 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Boundary layer meteorology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 |
title |
Passive scalar diffusion from surface sources in the convective boundary layer |
ctrlnum |
(DE-627)OLC2060938856 (DE-He213)BF00718128-p |
title_full |
Passive scalar diffusion from surface sources in the convective boundary layer |
author_sort |
Hadfield, M. G. |
journal |
Boundary layer meteorology |
journalStr |
Boundary layer meteorology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1994 |
contenttype_str_mv |
txt |
container_start_page |
417 |
author_browse |
Hadfield, M. G. |
container_volume |
69 |
class |
550 VZ 16,13 ssgn |
format_se |
Aufsätze |
author-letter |
Hadfield, M. G. |
doi_str_mv |
10.1007/BF00718128 |
dewey-full |
550 |
title_sort |
passive scalar diffusion from surface sources in the convective boundary layer |
title_auth |
Passive scalar diffusion from surface sources in the convective boundary layer |
abstract |
Abstract We examine vertical and horizontal diffusion of a passive scalar puff from a surface point source in a convective boundary layer (CBL). Numerical results are presented from a large-eddy simulation (LES) with embedded subgrid Lagrangian particle simulation (LPS). There is good agreement in most respects with previous laboratory and numerical studies. Analytical approximations for the concentration, horizontal flux and vertical flux are found to work reasonably well; they are based on the assumption that the concentration follows a Gaussian function in the horizontal and vertical, and that the dimensionless width and height scales of the puff follow simple functions of time. Fluxes and concentration gradients are related through a continuity relationship, without the need for an eddy diffusivity assumption. The instantaneous, point-source fields can be integrated for any source geometry. We compare predictions from the LES/LPS model for a sinusoidal surface flux with previous results from an LES with sinusoidal buoyancy flux and confirm that the buoyancy perturbations diffuse like a passive scalar. We also consider a continuous point source and derive footprint functions for vertical flux measurements above the surface layer. © Kluwer Academic Publishers 1994 |
abstractGer |
Abstract We examine vertical and horizontal diffusion of a passive scalar puff from a surface point source in a convective boundary layer (CBL). Numerical results are presented from a large-eddy simulation (LES) with embedded subgrid Lagrangian particle simulation (LPS). There is good agreement in most respects with previous laboratory and numerical studies. Analytical approximations for the concentration, horizontal flux and vertical flux are found to work reasonably well; they are based on the assumption that the concentration follows a Gaussian function in the horizontal and vertical, and that the dimensionless width and height scales of the puff follow simple functions of time. Fluxes and concentration gradients are related through a continuity relationship, without the need for an eddy diffusivity assumption. The instantaneous, point-source fields can be integrated for any source geometry. We compare predictions from the LES/LPS model for a sinusoidal surface flux with previous results from an LES with sinusoidal buoyancy flux and confirm that the buoyancy perturbations diffuse like a passive scalar. We also consider a continuous point source and derive footprint functions for vertical flux measurements above the surface layer. © Kluwer Academic Publishers 1994 |
abstract_unstemmed |
Abstract We examine vertical and horizontal diffusion of a passive scalar puff from a surface point source in a convective boundary layer (CBL). Numerical results are presented from a large-eddy simulation (LES) with embedded subgrid Lagrangian particle simulation (LPS). There is good agreement in most respects with previous laboratory and numerical studies. Analytical approximations for the concentration, horizontal flux and vertical flux are found to work reasonably well; they are based on the assumption that the concentration follows a Gaussian function in the horizontal and vertical, and that the dimensionless width and height scales of the puff follow simple functions of time. Fluxes and concentration gradients are related through a continuity relationship, without the need for an eddy diffusivity assumption. The instantaneous, point-source fields can be integrated for any source geometry. We compare predictions from the LES/LPS model for a sinusoidal surface flux with previous results from an LES with sinusoidal buoyancy flux and confirm that the buoyancy perturbations diffuse like a passive scalar. We also consider a continuous point source and derive footprint functions for vertical flux measurements above the surface layer. © Kluwer Academic Publishers 1994 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_154 GBV_ILN_201 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Passive scalar diffusion from surface sources in the convective boundary layer |
url |
https://doi.org/10.1007/BF00718128 |
remote_bool |
false |
ppnlink |
129610410 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF00718128 |
up_date |
2024-07-04T02:29:06.741Z |
_version_ |
1803613788432236544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060938856</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503004915.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1994 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00718128</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060938856</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00718128-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hadfield, M. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Passive scalar diffusion from surface sources in the convective boundary layer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1994</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 1994</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We examine vertical and horizontal diffusion of a passive scalar puff from a surface point source in a convective boundary layer (CBL). Numerical results are presented from a large-eddy simulation (LES) with embedded subgrid Lagrangian particle simulation (LPS). There is good agreement in most respects with previous laboratory and numerical studies. Analytical approximations for the concentration, horizontal flux and vertical flux are found to work reasonably well; they are based on the assumption that the concentration follows a Gaussian function in the horizontal and vertical, and that the dimensionless width and height scales of the puff follow simple functions of time. Fluxes and concentration gradients are related through a continuity relationship, without the need for an eddy diffusivity assumption. The instantaneous, point-source fields can be integrated for any source geometry. We compare predictions from the LES/LPS model for a sinusoidal surface flux with previous results from an LES with sinusoidal buoyancy flux and confirm that the buoyancy perturbations diffuse like a passive scalar. We also consider a continuous point source and derive footprint functions for vertical flux measurements above the surface layer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convective Boundary Layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eddy Diffusivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Passive Scalar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertical Flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buoyancy Flux</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boundary layer meteorology</subfield><subfield code="d">Kluwer Academic Publishers, 1970</subfield><subfield code="g">69(1994), 4 vom: Juni, Seite 417-448</subfield><subfield code="w">(DE-627)129610410</subfield><subfield code="w">(DE-600)242879-9</subfield><subfield code="w">(DE-576)015105679</subfield><subfield code="x">0006-8314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:69</subfield><subfield code="g">year:1994</subfield><subfield code="g">number:4</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:417-448</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00718128</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_201</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">69</subfield><subfield code="j">1994</subfield><subfield code="e">4</subfield><subfield code="c">06</subfield><subfield code="h">417-448</subfield></datafield></record></collection>
|
score |
7.4018106 |