Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area
Abstract A steady-state Reynolds-averaged Navier–Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where...
Ausführliche Beschreibung
Autor*in: |
Ramirez, N. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
Morphological parameterization |
---|
Anmerkung: |
© Springer Science+Business Media B.V., part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Boundary layer meteorology - Springer Netherlands, 1970, 168(2018), 1 vom: 27. Feb., Seite 155-187 |
---|---|
Übergeordnetes Werk: |
volume:168 ; year:2018 ; number:1 ; day:27 ; month:02 ; pages:155-187 |
Links: |
---|
DOI / URN: |
10.1007/s10546-018-0345-7 |
---|
Katalog-ID: |
OLC2060963834 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2060963834 | ||
003 | DE-627 | ||
005 | 20230503005126.0 | ||
007 | tu | ||
008 | 200819s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10546-018-0345-7 |2 doi | |
035 | |a (DE-627)OLC2060963834 | ||
035 | |a (DE-He213)s10546-018-0345-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 16,13 |2 ssgn | ||
100 | 1 | |a Ramirez, N. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media B.V., part of Springer Nature 2018 | ||
520 | |a Abstract A steady-state Reynolds-averaged Navier–Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349–1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald’s empirical formulations (Boundary-Layer Meteorol 97:25–45, 2000), Coceal and Belcher’s mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131–151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate. | ||
650 | 4 | |a Morphological parameterization | |
650 | 4 | |a Mixing-length model Reynolds-averaged Navier–Stoke | |
650 | 4 | |a Urban canopy model | |
650 | 4 | |a Airflow | |
700 | 1 | |a Afshari, Afshin |0 (orcid)0000-0002-3237-2162 |4 aut | |
700 | 1 | |a Norford, L. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Boundary layer meteorology |d Springer Netherlands, 1970 |g 168(2018), 1 vom: 27. Feb., Seite 155-187 |w (DE-627)129610410 |w (DE-600)242879-9 |w (DE-576)015105679 |x 0006-8314 |7 nnns |
773 | 1 | 8 | |g volume:168 |g year:2018 |g number:1 |g day:27 |g month:02 |g pages:155-187 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10546-018-0345-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_601 | ||
951 | |a AR | ||
952 | |d 168 |j 2018 |e 1 |b 27 |c 02 |h 155-187 |
author_variant |
n r nr a a aa l n ln |
---|---|
matchkey_str |
article:00068314:2018----::aiainfipiidracnpardnmcaaerztossnaueiasm |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s10546-018-0345-7 doi (DE-627)OLC2060963834 (DE-He213)s10546-018-0345-7-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Ramirez, N. verfasserin aut Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V., part of Springer Nature 2018 Abstract A steady-state Reynolds-averaged Navier–Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349–1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald’s empirical formulations (Boundary-Layer Meteorol 97:25–45, 2000), Coceal and Belcher’s mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131–151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate. Morphological parameterization Mixing-length model Reynolds-averaged Navier–Stoke Urban canopy model Airflow Afshari, Afshin (orcid)0000-0002-3237-2162 aut Norford, L. aut Enthalten in Boundary layer meteorology Springer Netherlands, 1970 168(2018), 1 vom: 27. Feb., Seite 155-187 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:168 year:2018 number:1 day:27 month:02 pages:155-187 https://doi.org/10.1007/s10546-018-0345-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_70 GBV_ILN_381 GBV_ILN_601 AR 168 2018 1 27 02 155-187 |
spelling |
10.1007/s10546-018-0345-7 doi (DE-627)OLC2060963834 (DE-He213)s10546-018-0345-7-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Ramirez, N. verfasserin aut Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V., part of Springer Nature 2018 Abstract A steady-state Reynolds-averaged Navier–Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349–1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald’s empirical formulations (Boundary-Layer Meteorol 97:25–45, 2000), Coceal and Belcher’s mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131–151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate. Morphological parameterization Mixing-length model Reynolds-averaged Navier–Stoke Urban canopy model Airflow Afshari, Afshin (orcid)0000-0002-3237-2162 aut Norford, L. aut Enthalten in Boundary layer meteorology Springer Netherlands, 1970 168(2018), 1 vom: 27. Feb., Seite 155-187 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:168 year:2018 number:1 day:27 month:02 pages:155-187 https://doi.org/10.1007/s10546-018-0345-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_70 GBV_ILN_381 GBV_ILN_601 AR 168 2018 1 27 02 155-187 |
allfields_unstemmed |
10.1007/s10546-018-0345-7 doi (DE-627)OLC2060963834 (DE-He213)s10546-018-0345-7-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Ramirez, N. verfasserin aut Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V., part of Springer Nature 2018 Abstract A steady-state Reynolds-averaged Navier–Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349–1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald’s empirical formulations (Boundary-Layer Meteorol 97:25–45, 2000), Coceal and Belcher’s mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131–151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate. Morphological parameterization Mixing-length model Reynolds-averaged Navier–Stoke Urban canopy model Airflow Afshari, Afshin (orcid)0000-0002-3237-2162 aut Norford, L. aut Enthalten in Boundary layer meteorology Springer Netherlands, 1970 168(2018), 1 vom: 27. Feb., Seite 155-187 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:168 year:2018 number:1 day:27 month:02 pages:155-187 https://doi.org/10.1007/s10546-018-0345-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_70 GBV_ILN_381 GBV_ILN_601 AR 168 2018 1 27 02 155-187 |
allfieldsGer |
10.1007/s10546-018-0345-7 doi (DE-627)OLC2060963834 (DE-He213)s10546-018-0345-7-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Ramirez, N. verfasserin aut Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V., part of Springer Nature 2018 Abstract A steady-state Reynolds-averaged Navier–Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349–1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald’s empirical formulations (Boundary-Layer Meteorol 97:25–45, 2000), Coceal and Belcher’s mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131–151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate. Morphological parameterization Mixing-length model Reynolds-averaged Navier–Stoke Urban canopy model Airflow Afshari, Afshin (orcid)0000-0002-3237-2162 aut Norford, L. aut Enthalten in Boundary layer meteorology Springer Netherlands, 1970 168(2018), 1 vom: 27. Feb., Seite 155-187 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:168 year:2018 number:1 day:27 month:02 pages:155-187 https://doi.org/10.1007/s10546-018-0345-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_70 GBV_ILN_381 GBV_ILN_601 AR 168 2018 1 27 02 155-187 |
allfieldsSound |
10.1007/s10546-018-0345-7 doi (DE-627)OLC2060963834 (DE-He213)s10546-018-0345-7-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Ramirez, N. verfasserin aut Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V., part of Springer Nature 2018 Abstract A steady-state Reynolds-averaged Navier–Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349–1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald’s empirical formulations (Boundary-Layer Meteorol 97:25–45, 2000), Coceal and Belcher’s mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131–151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate. Morphological parameterization Mixing-length model Reynolds-averaged Navier–Stoke Urban canopy model Airflow Afshari, Afshin (orcid)0000-0002-3237-2162 aut Norford, L. aut Enthalten in Boundary layer meteorology Springer Netherlands, 1970 168(2018), 1 vom: 27. Feb., Seite 155-187 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:168 year:2018 number:1 day:27 month:02 pages:155-187 https://doi.org/10.1007/s10546-018-0345-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_70 GBV_ILN_381 GBV_ILN_601 AR 168 2018 1 27 02 155-187 |
language |
English |
source |
Enthalten in Boundary layer meteorology 168(2018), 1 vom: 27. Feb., Seite 155-187 volume:168 year:2018 number:1 day:27 month:02 pages:155-187 |
sourceStr |
Enthalten in Boundary layer meteorology 168(2018), 1 vom: 27. Feb., Seite 155-187 volume:168 year:2018 number:1 day:27 month:02 pages:155-187 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Morphological parameterization Mixing-length model Reynolds-averaged Navier–Stoke Urban canopy model Airflow |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Boundary layer meteorology |
authorswithroles_txt_mv |
Ramirez, N. @@aut@@ Afshari, Afshin @@aut@@ Norford, L. @@aut@@ |
publishDateDaySort_date |
2018-02-27T00:00:00Z |
hierarchy_top_id |
129610410 |
dewey-sort |
3550 |
id |
OLC2060963834 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060963834</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503005126.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10546-018-0345-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060963834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10546-018-0345-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ramirez, N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V., part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A steady-state Reynolds-averaged Navier–Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349–1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald’s empirical formulations (Boundary-Layer Meteorol 97:25–45, 2000), Coceal and Belcher’s mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131–151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Morphological parameterization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixing-length model Reynolds-averaged Navier–Stoke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban canopy model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Airflow</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Afshari, Afshin</subfield><subfield code="0">(orcid)0000-0002-3237-2162</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Norford, L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boundary layer meteorology</subfield><subfield code="d">Springer Netherlands, 1970</subfield><subfield code="g">168(2018), 1 vom: 27. Feb., Seite 155-187</subfield><subfield code="w">(DE-627)129610410</subfield><subfield code="w">(DE-600)242879-9</subfield><subfield code="w">(DE-576)015105679</subfield><subfield code="x">0006-8314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:168</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:27</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:155-187</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10546-018-0345-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">168</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">27</subfield><subfield code="c">02</subfield><subfield code="h">155-187</subfield></datafield></record></collection>
|
author |
Ramirez, N. |
spellingShingle |
Ramirez, N. ddc 550 ssgn 16,13 misc Morphological parameterization misc Mixing-length model Reynolds-averaged Navier–Stoke misc Urban canopy model misc Airflow Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area |
authorStr |
Ramirez, N. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129610410 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0006-8314 |
topic_title |
550 VZ 16,13 ssgn Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area Morphological parameterization Mixing-length model Reynolds-averaged Navier–Stoke Urban canopy model Airflow |
topic |
ddc 550 ssgn 16,13 misc Morphological parameterization misc Mixing-length model Reynolds-averaged Navier–Stoke misc Urban canopy model misc Airflow |
topic_unstemmed |
ddc 550 ssgn 16,13 misc Morphological parameterization misc Mixing-length model Reynolds-averaged Navier–Stoke misc Urban canopy model misc Airflow |
topic_browse |
ddc 550 ssgn 16,13 misc Morphological parameterization misc Mixing-length model Reynolds-averaged Navier–Stoke misc Urban canopy model misc Airflow |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Boundary layer meteorology |
hierarchy_parent_id |
129610410 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Boundary layer meteorology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 |
title |
Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area |
ctrlnum |
(DE-627)OLC2060963834 (DE-He213)s10546-018-0345-7-p |
title_full |
Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area |
author_sort |
Ramirez, N. |
journal |
Boundary layer meteorology |
journalStr |
Boundary layer meteorology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
155 |
author_browse |
Ramirez, N. Afshari, Afshin Norford, L. |
container_volume |
168 |
class |
550 VZ 16,13 ssgn |
format_se |
Aufsätze |
author-letter |
Ramirez, N. |
doi_str_mv |
10.1007/s10546-018-0345-7 |
normlink |
(ORCID)0000-0002-3237-2162 |
normlink_prefix_str_mv |
(orcid)0000-0002-3237-2162 |
dewey-full |
550 |
title_sort |
validation of simplified urban-canopy aerodynamic parametrizations using a numerical simulation of an actual downtown area |
title_auth |
Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area |
abstract |
Abstract A steady-state Reynolds-averaged Navier–Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349–1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald’s empirical formulations (Boundary-Layer Meteorol 97:25–45, 2000), Coceal and Belcher’s mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131–151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate. © Springer Science+Business Media B.V., part of Springer Nature 2018 |
abstractGer |
Abstract A steady-state Reynolds-averaged Navier–Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349–1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald’s empirical formulations (Boundary-Layer Meteorol 97:25–45, 2000), Coceal and Belcher’s mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131–151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate. © Springer Science+Business Media B.V., part of Springer Nature 2018 |
abstract_unstemmed |
Abstract A steady-state Reynolds-averaged Navier–Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349–1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald’s empirical formulations (Boundary-Layer Meteorol 97:25–45, 2000), Coceal and Belcher’s mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131–151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate. © Springer Science+Business Media B.V., part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_70 GBV_ILN_381 GBV_ILN_601 |
container_issue |
1 |
title_short |
Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area |
url |
https://doi.org/10.1007/s10546-018-0345-7 |
remote_bool |
false |
author2 |
Afshari, Afshin Norford, L. |
author2Str |
Afshari, Afshin Norford, L. |
ppnlink |
129610410 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10546-018-0345-7 |
up_date |
2024-07-04T02:32:43.786Z |
_version_ |
1803614016021463040 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060963834</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503005126.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10546-018-0345-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060963834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10546-018-0345-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ramirez, N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V., part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A steady-state Reynolds-averaged Navier–Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349–1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald’s empirical formulations (Boundary-Layer Meteorol 97:25–45, 2000), Coceal and Belcher’s mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131–151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Morphological parameterization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixing-length model Reynolds-averaged Navier–Stoke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban canopy model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Airflow</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Afshari, Afshin</subfield><subfield code="0">(orcid)0000-0002-3237-2162</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Norford, L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boundary layer meteorology</subfield><subfield code="d">Springer Netherlands, 1970</subfield><subfield code="g">168(2018), 1 vom: 27. Feb., Seite 155-187</subfield><subfield code="w">(DE-627)129610410</subfield><subfield code="w">(DE-600)242879-9</subfield><subfield code="w">(DE-576)015105679</subfield><subfield code="x">0006-8314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:168</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:27</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:155-187</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10546-018-0345-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">168</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">27</subfield><subfield code="c">02</subfield><subfield code="h">155-187</subfield></datafield></record></collection>
|
score |
7.399419 |