Wind-Tunnel Simulation of Stable Atmospheric Boundary Layers with an Overlying Inversion
Abstract Four cases of an overlying inversion imposed on a stable boundary layer are investigated, extending the earlier work of Hancock and Hayden (Boundary-Layer Meteorol 168:29–57, 2018), where no inversion was imposed. The inversion is imposed to one or other of two depths within the layer: midw...
Ausführliche Beschreibung
Autor*in: |
Hancock, Philip E. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Boundary layer meteorology - Springer Netherlands, 1970, 175(2020), 1 vom: 03. Jan., Seite 93-112 |
---|---|
Übergeordnetes Werk: |
volume:175 ; year:2020 ; number:1 ; day:03 ; month:01 ; pages:93-112 |
Links: |
---|
DOI / URN: |
10.1007/s10546-019-00496-7 |
---|
Katalog-ID: |
OLC2060965411 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2060965411 | ||
003 | DE-627 | ||
005 | 20230504125531.0 | ||
007 | tu | ||
008 | 200819s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10546-019-00496-7 |2 doi | |
035 | |a (DE-627)OLC2060965411 | ||
035 | |a (DE-He213)s10546-019-00496-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 16,13 |2 ssgn | ||
100 | 1 | |a Hancock, Philip E. |e verfasserin |0 (orcid)0000-0002-4587-230X |4 aut | |
245 | 1 | 0 | |a Wind-Tunnel Simulation of Stable Atmospheric Boundary Layers with an Overlying Inversion |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2020 | ||
520 | |a Abstract Four cases of an overlying inversion imposed on a stable boundary layer are investigated, extending the earlier work of Hancock and Hayden (Boundary-Layer Meteorol 168:29–57, 2018), where no inversion was imposed. The inversion is imposed to one or other of two depths within the layer: midway or deep. Four cases of changed surface condition are also investigated, and it is seen that the surface and imposed conditions behave independently. A change of imposed inversion condition leaves the bottom 1/3 of the layer almost completely unaffected; a change of the surface condition leaves the top 2/3 unaffected. Comparisons are made against two sets of local-scaling systems over the full height of the boundary layer. Both show some influence of the inversion condition. The surface heat flux and the reduction in surface shear stress, and hence the ratio of the boundary-layer height to surface Obukhov length, are determined by the temperature difference across the surface layer (not the whole layer), bringing all cases together in single correlations as functions of a surface-layer bulk Richardson number. | ||
650 | 4 | |a Inversion | |
650 | 4 | |a Stable boundary layer | |
650 | 4 | |a Wind tunnel | |
700 | 1 | |a Hayden, Paul |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Boundary layer meteorology |d Springer Netherlands, 1970 |g 175(2020), 1 vom: 03. Jan., Seite 93-112 |w (DE-627)129610410 |w (DE-600)242879-9 |w (DE-576)015105679 |x 0006-8314 |7 nnns |
773 | 1 | 8 | |g volume:175 |g year:2020 |g number:1 |g day:03 |g month:01 |g pages:93-112 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10546-019-00496-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_601 | ||
951 | |a AR | ||
952 | |d 175 |j 2020 |e 1 |b 03 |c 01 |h 93-112 |
author_variant |
p e h pe peh p h ph |
---|---|
matchkey_str |
article:00068314:2020----::idunliuainftbetopeibudrlyrwt |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10546-019-00496-7 doi (DE-627)OLC2060965411 (DE-He213)s10546-019-00496-7-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Hancock, Philip E. verfasserin (orcid)0000-0002-4587-230X aut Wind-Tunnel Simulation of Stable Atmospheric Boundary Layers with an Overlying Inversion 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Four cases of an overlying inversion imposed on a stable boundary layer are investigated, extending the earlier work of Hancock and Hayden (Boundary-Layer Meteorol 168:29–57, 2018), where no inversion was imposed. The inversion is imposed to one or other of two depths within the layer: midway or deep. Four cases of changed surface condition are also investigated, and it is seen that the surface and imposed conditions behave independently. A change of imposed inversion condition leaves the bottom 1/3 of the layer almost completely unaffected; a change of the surface condition leaves the top 2/3 unaffected. Comparisons are made against two sets of local-scaling systems over the full height of the boundary layer. Both show some influence of the inversion condition. The surface heat flux and the reduction in surface shear stress, and hence the ratio of the boundary-layer height to surface Obukhov length, are determined by the temperature difference across the surface layer (not the whole layer), bringing all cases together in single correlations as functions of a surface-layer bulk Richardson number. Inversion Stable boundary layer Wind tunnel Hayden, Paul aut Enthalten in Boundary layer meteorology Springer Netherlands, 1970 175(2020), 1 vom: 03. Jan., Seite 93-112 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:175 year:2020 number:1 day:03 month:01 pages:93-112 https://doi.org/10.1007/s10546-019-00496-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_381 GBV_ILN_601 AR 175 2020 1 03 01 93-112 |
spelling |
10.1007/s10546-019-00496-7 doi (DE-627)OLC2060965411 (DE-He213)s10546-019-00496-7-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Hancock, Philip E. verfasserin (orcid)0000-0002-4587-230X aut Wind-Tunnel Simulation of Stable Atmospheric Boundary Layers with an Overlying Inversion 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Four cases of an overlying inversion imposed on a stable boundary layer are investigated, extending the earlier work of Hancock and Hayden (Boundary-Layer Meteorol 168:29–57, 2018), where no inversion was imposed. The inversion is imposed to one or other of two depths within the layer: midway or deep. Four cases of changed surface condition are also investigated, and it is seen that the surface and imposed conditions behave independently. A change of imposed inversion condition leaves the bottom 1/3 of the layer almost completely unaffected; a change of the surface condition leaves the top 2/3 unaffected. Comparisons are made against two sets of local-scaling systems over the full height of the boundary layer. Both show some influence of the inversion condition. The surface heat flux and the reduction in surface shear stress, and hence the ratio of the boundary-layer height to surface Obukhov length, are determined by the temperature difference across the surface layer (not the whole layer), bringing all cases together in single correlations as functions of a surface-layer bulk Richardson number. Inversion Stable boundary layer Wind tunnel Hayden, Paul aut Enthalten in Boundary layer meteorology Springer Netherlands, 1970 175(2020), 1 vom: 03. Jan., Seite 93-112 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:175 year:2020 number:1 day:03 month:01 pages:93-112 https://doi.org/10.1007/s10546-019-00496-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_381 GBV_ILN_601 AR 175 2020 1 03 01 93-112 |
allfields_unstemmed |
10.1007/s10546-019-00496-7 doi (DE-627)OLC2060965411 (DE-He213)s10546-019-00496-7-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Hancock, Philip E. verfasserin (orcid)0000-0002-4587-230X aut Wind-Tunnel Simulation of Stable Atmospheric Boundary Layers with an Overlying Inversion 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Four cases of an overlying inversion imposed on a stable boundary layer are investigated, extending the earlier work of Hancock and Hayden (Boundary-Layer Meteorol 168:29–57, 2018), where no inversion was imposed. The inversion is imposed to one or other of two depths within the layer: midway or deep. Four cases of changed surface condition are also investigated, and it is seen that the surface and imposed conditions behave independently. A change of imposed inversion condition leaves the bottom 1/3 of the layer almost completely unaffected; a change of the surface condition leaves the top 2/3 unaffected. Comparisons are made against two sets of local-scaling systems over the full height of the boundary layer. Both show some influence of the inversion condition. The surface heat flux and the reduction in surface shear stress, and hence the ratio of the boundary-layer height to surface Obukhov length, are determined by the temperature difference across the surface layer (not the whole layer), bringing all cases together in single correlations as functions of a surface-layer bulk Richardson number. Inversion Stable boundary layer Wind tunnel Hayden, Paul aut Enthalten in Boundary layer meteorology Springer Netherlands, 1970 175(2020), 1 vom: 03. Jan., Seite 93-112 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:175 year:2020 number:1 day:03 month:01 pages:93-112 https://doi.org/10.1007/s10546-019-00496-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_381 GBV_ILN_601 AR 175 2020 1 03 01 93-112 |
allfieldsGer |
10.1007/s10546-019-00496-7 doi (DE-627)OLC2060965411 (DE-He213)s10546-019-00496-7-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Hancock, Philip E. verfasserin (orcid)0000-0002-4587-230X aut Wind-Tunnel Simulation of Stable Atmospheric Boundary Layers with an Overlying Inversion 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Four cases of an overlying inversion imposed on a stable boundary layer are investigated, extending the earlier work of Hancock and Hayden (Boundary-Layer Meteorol 168:29–57, 2018), where no inversion was imposed. The inversion is imposed to one or other of two depths within the layer: midway or deep. Four cases of changed surface condition are also investigated, and it is seen that the surface and imposed conditions behave independently. A change of imposed inversion condition leaves the bottom 1/3 of the layer almost completely unaffected; a change of the surface condition leaves the top 2/3 unaffected. Comparisons are made against two sets of local-scaling systems over the full height of the boundary layer. Both show some influence of the inversion condition. The surface heat flux and the reduction in surface shear stress, and hence the ratio of the boundary-layer height to surface Obukhov length, are determined by the temperature difference across the surface layer (not the whole layer), bringing all cases together in single correlations as functions of a surface-layer bulk Richardson number. Inversion Stable boundary layer Wind tunnel Hayden, Paul aut Enthalten in Boundary layer meteorology Springer Netherlands, 1970 175(2020), 1 vom: 03. Jan., Seite 93-112 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:175 year:2020 number:1 day:03 month:01 pages:93-112 https://doi.org/10.1007/s10546-019-00496-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_381 GBV_ILN_601 AR 175 2020 1 03 01 93-112 |
allfieldsSound |
10.1007/s10546-019-00496-7 doi (DE-627)OLC2060965411 (DE-He213)s10546-019-00496-7-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Hancock, Philip E. verfasserin (orcid)0000-0002-4587-230X aut Wind-Tunnel Simulation of Stable Atmospheric Boundary Layers with an Overlying Inversion 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Four cases of an overlying inversion imposed on a stable boundary layer are investigated, extending the earlier work of Hancock and Hayden (Boundary-Layer Meteorol 168:29–57, 2018), where no inversion was imposed. The inversion is imposed to one or other of two depths within the layer: midway or deep. Four cases of changed surface condition are also investigated, and it is seen that the surface and imposed conditions behave independently. A change of imposed inversion condition leaves the bottom 1/3 of the layer almost completely unaffected; a change of the surface condition leaves the top 2/3 unaffected. Comparisons are made against two sets of local-scaling systems over the full height of the boundary layer. Both show some influence of the inversion condition. The surface heat flux and the reduction in surface shear stress, and hence the ratio of the boundary-layer height to surface Obukhov length, are determined by the temperature difference across the surface layer (not the whole layer), bringing all cases together in single correlations as functions of a surface-layer bulk Richardson number. Inversion Stable boundary layer Wind tunnel Hayden, Paul aut Enthalten in Boundary layer meteorology Springer Netherlands, 1970 175(2020), 1 vom: 03. Jan., Seite 93-112 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:175 year:2020 number:1 day:03 month:01 pages:93-112 https://doi.org/10.1007/s10546-019-00496-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_381 GBV_ILN_601 AR 175 2020 1 03 01 93-112 |
language |
English |
source |
Enthalten in Boundary layer meteorology 175(2020), 1 vom: 03. Jan., Seite 93-112 volume:175 year:2020 number:1 day:03 month:01 pages:93-112 |
sourceStr |
Enthalten in Boundary layer meteorology 175(2020), 1 vom: 03. Jan., Seite 93-112 volume:175 year:2020 number:1 day:03 month:01 pages:93-112 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Inversion Stable boundary layer Wind tunnel |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Boundary layer meteorology |
authorswithroles_txt_mv |
Hancock, Philip E. @@aut@@ Hayden, Paul @@aut@@ |
publishDateDaySort_date |
2020-01-03T00:00:00Z |
hierarchy_top_id |
129610410 |
dewey-sort |
3550 |
id |
OLC2060965411 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060965411</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504125531.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10546-019-00496-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060965411</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10546-019-00496-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hancock, Philip E.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4587-230X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wind-Tunnel Simulation of Stable Atmospheric Boundary Layers with an Overlying Inversion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Four cases of an overlying inversion imposed on a stable boundary layer are investigated, extending the earlier work of Hancock and Hayden (Boundary-Layer Meteorol 168:29–57, 2018), where no inversion was imposed. The inversion is imposed to one or other of two depths within the layer: midway or deep. Four cases of changed surface condition are also investigated, and it is seen that the surface and imposed conditions behave independently. A change of imposed inversion condition leaves the bottom 1/3 of the layer almost completely unaffected; a change of the surface condition leaves the top 2/3 unaffected. Comparisons are made against two sets of local-scaling systems over the full height of the boundary layer. Both show some influence of the inversion condition. The surface heat flux and the reduction in surface shear stress, and hence the ratio of the boundary-layer height to surface Obukhov length, are determined by the temperature difference across the surface layer (not the whole layer), bringing all cases together in single correlations as functions of a surface-layer bulk Richardson number.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inversion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stable boundary layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind tunnel</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hayden, Paul</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boundary layer meteorology</subfield><subfield code="d">Springer Netherlands, 1970</subfield><subfield code="g">175(2020), 1 vom: 03. Jan., Seite 93-112</subfield><subfield code="w">(DE-627)129610410</subfield><subfield code="w">(DE-600)242879-9</subfield><subfield code="w">(DE-576)015105679</subfield><subfield code="x">0006-8314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:175</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:93-112</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10546-019-00496-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">175</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">01</subfield><subfield code="h">93-112</subfield></datafield></record></collection>
|
author |
Hancock, Philip E. |
spellingShingle |
Hancock, Philip E. ddc 550 ssgn 16,13 misc Inversion misc Stable boundary layer misc Wind tunnel Wind-Tunnel Simulation of Stable Atmospheric Boundary Layers with an Overlying Inversion |
authorStr |
Hancock, Philip E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129610410 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0006-8314 |
topic_title |
550 VZ 16,13 ssgn Wind-Tunnel Simulation of Stable Atmospheric Boundary Layers with an Overlying Inversion Inversion Stable boundary layer Wind tunnel |
topic |
ddc 550 ssgn 16,13 misc Inversion misc Stable boundary layer misc Wind tunnel |
topic_unstemmed |
ddc 550 ssgn 16,13 misc Inversion misc Stable boundary layer misc Wind tunnel |
topic_browse |
ddc 550 ssgn 16,13 misc Inversion misc Stable boundary layer misc Wind tunnel |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Boundary layer meteorology |
hierarchy_parent_id |
129610410 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Boundary layer meteorology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 |
title |
Wind-Tunnel Simulation of Stable Atmospheric Boundary Layers with an Overlying Inversion |
ctrlnum |
(DE-627)OLC2060965411 (DE-He213)s10546-019-00496-7-p |
title_full |
Wind-Tunnel Simulation of Stable Atmospheric Boundary Layers with an Overlying Inversion |
author_sort |
Hancock, Philip E. |
journal |
Boundary layer meteorology |
journalStr |
Boundary layer meteorology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
93 |
author_browse |
Hancock, Philip E. Hayden, Paul |
container_volume |
175 |
class |
550 VZ 16,13 ssgn |
format_se |
Aufsätze |
author-letter |
Hancock, Philip E. |
doi_str_mv |
10.1007/s10546-019-00496-7 |
normlink |
(ORCID)0000-0002-4587-230X |
normlink_prefix_str_mv |
(orcid)0000-0002-4587-230X |
dewey-full |
550 |
title_sort |
wind-tunnel simulation of stable atmospheric boundary layers with an overlying inversion |
title_auth |
Wind-Tunnel Simulation of Stable Atmospheric Boundary Layers with an Overlying Inversion |
abstract |
Abstract Four cases of an overlying inversion imposed on a stable boundary layer are investigated, extending the earlier work of Hancock and Hayden (Boundary-Layer Meteorol 168:29–57, 2018), where no inversion was imposed. The inversion is imposed to one or other of two depths within the layer: midway or deep. Four cases of changed surface condition are also investigated, and it is seen that the surface and imposed conditions behave independently. A change of imposed inversion condition leaves the bottom 1/3 of the layer almost completely unaffected; a change of the surface condition leaves the top 2/3 unaffected. Comparisons are made against two sets of local-scaling systems over the full height of the boundary layer. Both show some influence of the inversion condition. The surface heat flux and the reduction in surface shear stress, and hence the ratio of the boundary-layer height to surface Obukhov length, are determined by the temperature difference across the surface layer (not the whole layer), bringing all cases together in single correlations as functions of a surface-layer bulk Richardson number. © The Author(s) 2020 |
abstractGer |
Abstract Four cases of an overlying inversion imposed on a stable boundary layer are investigated, extending the earlier work of Hancock and Hayden (Boundary-Layer Meteorol 168:29–57, 2018), where no inversion was imposed. The inversion is imposed to one or other of two depths within the layer: midway or deep. Four cases of changed surface condition are also investigated, and it is seen that the surface and imposed conditions behave independently. A change of imposed inversion condition leaves the bottom 1/3 of the layer almost completely unaffected; a change of the surface condition leaves the top 2/3 unaffected. Comparisons are made against two sets of local-scaling systems over the full height of the boundary layer. Both show some influence of the inversion condition. The surface heat flux and the reduction in surface shear stress, and hence the ratio of the boundary-layer height to surface Obukhov length, are determined by the temperature difference across the surface layer (not the whole layer), bringing all cases together in single correlations as functions of a surface-layer bulk Richardson number. © The Author(s) 2020 |
abstract_unstemmed |
Abstract Four cases of an overlying inversion imposed on a stable boundary layer are investigated, extending the earlier work of Hancock and Hayden (Boundary-Layer Meteorol 168:29–57, 2018), where no inversion was imposed. The inversion is imposed to one or other of two depths within the layer: midway or deep. Four cases of changed surface condition are also investigated, and it is seen that the surface and imposed conditions behave independently. A change of imposed inversion condition leaves the bottom 1/3 of the layer almost completely unaffected; a change of the surface condition leaves the top 2/3 unaffected. Comparisons are made against two sets of local-scaling systems over the full height of the boundary layer. Both show some influence of the inversion condition. The surface heat flux and the reduction in surface shear stress, and hence the ratio of the boundary-layer height to surface Obukhov length, are determined by the temperature difference across the surface layer (not the whole layer), bringing all cases together in single correlations as functions of a surface-layer bulk Richardson number. © The Author(s) 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_381 GBV_ILN_601 |
container_issue |
1 |
title_short |
Wind-Tunnel Simulation of Stable Atmospheric Boundary Layers with an Overlying Inversion |
url |
https://doi.org/10.1007/s10546-019-00496-7 |
remote_bool |
false |
author2 |
Hayden, Paul |
author2Str |
Hayden, Paul |
ppnlink |
129610410 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10546-019-00496-7 |
up_date |
2024-07-04T02:32:59.129Z |
_version_ |
1803614032109764608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2060965411</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504125531.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10546-019-00496-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2060965411</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10546-019-00496-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hancock, Philip E.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4587-230X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wind-Tunnel Simulation of Stable Atmospheric Boundary Layers with an Overlying Inversion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Four cases of an overlying inversion imposed on a stable boundary layer are investigated, extending the earlier work of Hancock and Hayden (Boundary-Layer Meteorol 168:29–57, 2018), where no inversion was imposed. The inversion is imposed to one or other of two depths within the layer: midway or deep. Four cases of changed surface condition are also investigated, and it is seen that the surface and imposed conditions behave independently. A change of imposed inversion condition leaves the bottom 1/3 of the layer almost completely unaffected; a change of the surface condition leaves the top 2/3 unaffected. Comparisons are made against two sets of local-scaling systems over the full height of the boundary layer. Both show some influence of the inversion condition. The surface heat flux and the reduction in surface shear stress, and hence the ratio of the boundary-layer height to surface Obukhov length, are determined by the temperature difference across the surface layer (not the whole layer), bringing all cases together in single correlations as functions of a surface-layer bulk Richardson number.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inversion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stable boundary layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind tunnel</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hayden, Paul</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boundary layer meteorology</subfield><subfield code="d">Springer Netherlands, 1970</subfield><subfield code="g">175(2020), 1 vom: 03. Jan., Seite 93-112</subfield><subfield code="w">(DE-627)129610410</subfield><subfield code="w">(DE-600)242879-9</subfield><subfield code="w">(DE-576)015105679</subfield><subfield code="x">0006-8314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:175</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:93-112</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10546-019-00496-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">175</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">01</subfield><subfield code="h">93-112</subfield></datafield></record></collection>
|
score |
7.401127 |