Production of Co–Cr–Al–Y–Si powder alloys
A more effective process of producing the Co–Cr–Al–Y–Si powder with 40–100 mm particles has been developed. This process yields 70% of this powder fraction, while other existing processes provide 50–60%. The proposed process involves melting of ingots in an electron-beam unit and their subsequent fr...
Ausführliche Beschreibung
Autor*in: |
Grechanyuk, N. I. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Powder metallurgy and metal ceramics - Springer US, 1993, 51(2013), 11-12 vom: März, Seite 633-638 |
---|---|
Übergeordnetes Werk: |
volume:51 ; year:2013 ; number:11-12 ; month:03 ; pages:633-638 |
Links: |
---|
DOI / URN: |
10.1007/s11106-013-9479-9 |
---|
Katalog-ID: |
OLC206115512X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC206115512X | ||
003 | DE-627 | ||
005 | 20230504011109.0 | ||
007 | tu | ||
008 | 200819s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11106-013-9479-9 |2 doi | |
035 | |a (DE-627)OLC206115512X | ||
035 | |a (DE-He213)s11106-013-9479-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Grechanyuk, N. I. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Production of Co–Cr–Al–Y–Si powder alloys |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2013 | ||
520 | |a A more effective process of producing the Co–Cr–Al–Y–Si powder with 40–100 mm particles has been developed. This process yields 70% of this powder fraction, while other existing processes provide 50–60%. The proposed process involves melting of ingots in an electron-beam unit and their subsequent fragmentation using a press and strip rolling mill. It is shown that energy consumption is lower during this mechanical grinding compared to the use of crushers and mills and is almost 20 times higher in atomization. The developed process is waste-free: 40 μm powder fraction is remetled in the ingot production process. The method of producing the Co–Cr–Al–Y–Si powder has been patented. The powder is used as a heat-resistant sublayer of thermal protection coatings for blades of gas turbine engines. | ||
650 | 4 | |a electron-beam remelting | |
650 | 4 | |a milling | |
650 | 4 | |a grinding | |
650 | 4 | |a press | |
650 | 4 | |a strip rolling mill | |
650 | 4 | |a size analysis | |
700 | 1 | |a Gogaev, K. A. |4 aut | |
700 | 1 | |a Zatovskii, V. G. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Powder metallurgy and metal ceramics |d Springer US, 1993 |g 51(2013), 11-12 vom: März, Seite 633-638 |w (DE-627)171221524 |w (DE-600)1167195-6 |w (DE-576)038719614 |x 1068-1302 |7 nnns |
773 | 1 | 8 | |g volume:51 |g year:2013 |g number:11-12 |g month:03 |g pages:633-638 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11106-013-9479-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 51 |j 2013 |e 11-12 |c 03 |h 633-638 |
author_variant |
n i g ni nig k a g ka kag v g z vg vgz |
---|---|
matchkey_str |
article:10681302:2013----::rdcinforlspw |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s11106-013-9479-9 doi (DE-627)OLC206115512X (DE-He213)s11106-013-9479-9-p DE-627 ger DE-627 rakwb eng 670 VZ Grechanyuk, N. I. verfasserin aut Production of Co–Cr–Al–Y–Si powder alloys 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 A more effective process of producing the Co–Cr–Al–Y–Si powder with 40–100 mm particles has been developed. This process yields 70% of this powder fraction, while other existing processes provide 50–60%. The proposed process involves melting of ingots in an electron-beam unit and their subsequent fragmentation using a press and strip rolling mill. It is shown that energy consumption is lower during this mechanical grinding compared to the use of crushers and mills and is almost 20 times higher in atomization. The developed process is waste-free: 40 μm powder fraction is remetled in the ingot production process. The method of producing the Co–Cr–Al–Y–Si powder has been patented. The powder is used as a heat-resistant sublayer of thermal protection coatings for blades of gas turbine engines. electron-beam remelting milling grinding press strip rolling mill size analysis Gogaev, K. A. aut Zatovskii, V. G. aut Enthalten in Powder metallurgy and metal ceramics Springer US, 1993 51(2013), 11-12 vom: März, Seite 633-638 (DE-627)171221524 (DE-600)1167195-6 (DE-576)038719614 1068-1302 nnns volume:51 year:2013 number:11-12 month:03 pages:633-638 https://doi.org/10.1007/s11106-013-9479-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_32 GBV_ILN_70 AR 51 2013 11-12 03 633-638 |
spelling |
10.1007/s11106-013-9479-9 doi (DE-627)OLC206115512X (DE-He213)s11106-013-9479-9-p DE-627 ger DE-627 rakwb eng 670 VZ Grechanyuk, N. I. verfasserin aut Production of Co–Cr–Al–Y–Si powder alloys 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 A more effective process of producing the Co–Cr–Al–Y–Si powder with 40–100 mm particles has been developed. This process yields 70% of this powder fraction, while other existing processes provide 50–60%. The proposed process involves melting of ingots in an electron-beam unit and their subsequent fragmentation using a press and strip rolling mill. It is shown that energy consumption is lower during this mechanical grinding compared to the use of crushers and mills and is almost 20 times higher in atomization. The developed process is waste-free: 40 μm powder fraction is remetled in the ingot production process. The method of producing the Co–Cr–Al–Y–Si powder has been patented. The powder is used as a heat-resistant sublayer of thermal protection coatings for blades of gas turbine engines. electron-beam remelting milling grinding press strip rolling mill size analysis Gogaev, K. A. aut Zatovskii, V. G. aut Enthalten in Powder metallurgy and metal ceramics Springer US, 1993 51(2013), 11-12 vom: März, Seite 633-638 (DE-627)171221524 (DE-600)1167195-6 (DE-576)038719614 1068-1302 nnns volume:51 year:2013 number:11-12 month:03 pages:633-638 https://doi.org/10.1007/s11106-013-9479-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_32 GBV_ILN_70 AR 51 2013 11-12 03 633-638 |
allfields_unstemmed |
10.1007/s11106-013-9479-9 doi (DE-627)OLC206115512X (DE-He213)s11106-013-9479-9-p DE-627 ger DE-627 rakwb eng 670 VZ Grechanyuk, N. I. verfasserin aut Production of Co–Cr–Al–Y–Si powder alloys 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 A more effective process of producing the Co–Cr–Al–Y–Si powder with 40–100 mm particles has been developed. This process yields 70% of this powder fraction, while other existing processes provide 50–60%. The proposed process involves melting of ingots in an electron-beam unit and their subsequent fragmentation using a press and strip rolling mill. It is shown that energy consumption is lower during this mechanical grinding compared to the use of crushers and mills and is almost 20 times higher in atomization. The developed process is waste-free: 40 μm powder fraction is remetled in the ingot production process. The method of producing the Co–Cr–Al–Y–Si powder has been patented. The powder is used as a heat-resistant sublayer of thermal protection coatings for blades of gas turbine engines. electron-beam remelting milling grinding press strip rolling mill size analysis Gogaev, K. A. aut Zatovskii, V. G. aut Enthalten in Powder metallurgy and metal ceramics Springer US, 1993 51(2013), 11-12 vom: März, Seite 633-638 (DE-627)171221524 (DE-600)1167195-6 (DE-576)038719614 1068-1302 nnns volume:51 year:2013 number:11-12 month:03 pages:633-638 https://doi.org/10.1007/s11106-013-9479-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_32 GBV_ILN_70 AR 51 2013 11-12 03 633-638 |
allfieldsGer |
10.1007/s11106-013-9479-9 doi (DE-627)OLC206115512X (DE-He213)s11106-013-9479-9-p DE-627 ger DE-627 rakwb eng 670 VZ Grechanyuk, N. I. verfasserin aut Production of Co–Cr–Al–Y–Si powder alloys 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 A more effective process of producing the Co–Cr–Al–Y–Si powder with 40–100 mm particles has been developed. This process yields 70% of this powder fraction, while other existing processes provide 50–60%. The proposed process involves melting of ingots in an electron-beam unit and their subsequent fragmentation using a press and strip rolling mill. It is shown that energy consumption is lower during this mechanical grinding compared to the use of crushers and mills and is almost 20 times higher in atomization. The developed process is waste-free: 40 μm powder fraction is remetled in the ingot production process. The method of producing the Co–Cr–Al–Y–Si powder has been patented. The powder is used as a heat-resistant sublayer of thermal protection coatings for blades of gas turbine engines. electron-beam remelting milling grinding press strip rolling mill size analysis Gogaev, K. A. aut Zatovskii, V. G. aut Enthalten in Powder metallurgy and metal ceramics Springer US, 1993 51(2013), 11-12 vom: März, Seite 633-638 (DE-627)171221524 (DE-600)1167195-6 (DE-576)038719614 1068-1302 nnns volume:51 year:2013 number:11-12 month:03 pages:633-638 https://doi.org/10.1007/s11106-013-9479-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_32 GBV_ILN_70 AR 51 2013 11-12 03 633-638 |
allfieldsSound |
10.1007/s11106-013-9479-9 doi (DE-627)OLC206115512X (DE-He213)s11106-013-9479-9-p DE-627 ger DE-627 rakwb eng 670 VZ Grechanyuk, N. I. verfasserin aut Production of Co–Cr–Al–Y–Si powder alloys 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 A more effective process of producing the Co–Cr–Al–Y–Si powder with 40–100 mm particles has been developed. This process yields 70% of this powder fraction, while other existing processes provide 50–60%. The proposed process involves melting of ingots in an electron-beam unit and their subsequent fragmentation using a press and strip rolling mill. It is shown that energy consumption is lower during this mechanical grinding compared to the use of crushers and mills and is almost 20 times higher in atomization. The developed process is waste-free: 40 μm powder fraction is remetled in the ingot production process. The method of producing the Co–Cr–Al–Y–Si powder has been patented. The powder is used as a heat-resistant sublayer of thermal protection coatings for blades of gas turbine engines. electron-beam remelting milling grinding press strip rolling mill size analysis Gogaev, K. A. aut Zatovskii, V. G. aut Enthalten in Powder metallurgy and metal ceramics Springer US, 1993 51(2013), 11-12 vom: März, Seite 633-638 (DE-627)171221524 (DE-600)1167195-6 (DE-576)038719614 1068-1302 nnns volume:51 year:2013 number:11-12 month:03 pages:633-638 https://doi.org/10.1007/s11106-013-9479-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_32 GBV_ILN_70 AR 51 2013 11-12 03 633-638 |
language |
English |
source |
Enthalten in Powder metallurgy and metal ceramics 51(2013), 11-12 vom: März, Seite 633-638 volume:51 year:2013 number:11-12 month:03 pages:633-638 |
sourceStr |
Enthalten in Powder metallurgy and metal ceramics 51(2013), 11-12 vom: März, Seite 633-638 volume:51 year:2013 number:11-12 month:03 pages:633-638 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
electron-beam remelting milling grinding press strip rolling mill size analysis |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Powder metallurgy and metal ceramics |
authorswithroles_txt_mv |
Grechanyuk, N. I. @@aut@@ Gogaev, K. A. @@aut@@ Zatovskii, V. G. @@aut@@ |
publishDateDaySort_date |
2013-03-01T00:00:00Z |
hierarchy_top_id |
171221524 |
dewey-sort |
3670 |
id |
OLC206115512X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206115512X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504011109.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11106-013-9479-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206115512X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11106-013-9479-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grechanyuk, N. I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Production of Co–Cr–Al–Y–Si powder alloys</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A more effective process of producing the Co–Cr–Al–Y–Si powder with 40–100 mm particles has been developed. This process yields 70% of this powder fraction, while other existing processes provide 50–60%. The proposed process involves melting of ingots in an electron-beam unit and their subsequent fragmentation using a press and strip rolling mill. It is shown that energy consumption is lower during this mechanical grinding compared to the use of crushers and mills and is almost 20 times higher in atomization. The developed process is waste-free: 40 μm powder fraction is remetled in the ingot production process. The method of producing the Co–Cr–Al–Y–Si powder has been patented. The powder is used as a heat-resistant sublayer of thermal protection coatings for blades of gas turbine engines.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electron-beam remelting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">milling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">grinding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">press</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strip rolling mill</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">size analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gogaev, K. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zatovskii, V. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Powder metallurgy and metal ceramics</subfield><subfield code="d">Springer US, 1993</subfield><subfield code="g">51(2013), 11-12 vom: März, Seite 633-638</subfield><subfield code="w">(DE-627)171221524</subfield><subfield code="w">(DE-600)1167195-6</subfield><subfield code="w">(DE-576)038719614</subfield><subfield code="x">1068-1302</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:11-12</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:633-638</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11106-013-9479-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2013</subfield><subfield code="e">11-12</subfield><subfield code="c">03</subfield><subfield code="h">633-638</subfield></datafield></record></collection>
|
author |
Grechanyuk, N. I. |
spellingShingle |
Grechanyuk, N. I. ddc 670 misc electron-beam remelting misc milling misc grinding misc press misc strip rolling mill misc size analysis Production of Co–Cr–Al–Y–Si powder alloys |
authorStr |
Grechanyuk, N. I. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171221524 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1068-1302 |
topic_title |
670 VZ Production of Co–Cr–Al–Y–Si powder alloys electron-beam remelting milling grinding press strip rolling mill size analysis |
topic |
ddc 670 misc electron-beam remelting misc milling misc grinding misc press misc strip rolling mill misc size analysis |
topic_unstemmed |
ddc 670 misc electron-beam remelting misc milling misc grinding misc press misc strip rolling mill misc size analysis |
topic_browse |
ddc 670 misc electron-beam remelting misc milling misc grinding misc press misc strip rolling mill misc size analysis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Powder metallurgy and metal ceramics |
hierarchy_parent_id |
171221524 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Powder metallurgy and metal ceramics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171221524 (DE-600)1167195-6 (DE-576)038719614 |
title |
Production of Co–Cr–Al–Y–Si powder alloys |
ctrlnum |
(DE-627)OLC206115512X (DE-He213)s11106-013-9479-9-p |
title_full |
Production of Co–Cr–Al–Y–Si powder alloys |
author_sort |
Grechanyuk, N. I. |
journal |
Powder metallurgy and metal ceramics |
journalStr |
Powder metallurgy and metal ceramics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
633 |
author_browse |
Grechanyuk, N. I. Gogaev, K. A. Zatovskii, V. G. |
container_volume |
51 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Grechanyuk, N. I. |
doi_str_mv |
10.1007/s11106-013-9479-9 |
dewey-full |
670 |
title_sort |
production of co–cr–al–y–si powder alloys |
title_auth |
Production of Co–Cr–Al–Y–Si powder alloys |
abstract |
A more effective process of producing the Co–Cr–Al–Y–Si powder with 40–100 mm particles has been developed. This process yields 70% of this powder fraction, while other existing processes provide 50–60%. The proposed process involves melting of ingots in an electron-beam unit and their subsequent fragmentation using a press and strip rolling mill. It is shown that energy consumption is lower during this mechanical grinding compared to the use of crushers and mills and is almost 20 times higher in atomization. The developed process is waste-free: 40 μm powder fraction is remetled in the ingot production process. The method of producing the Co–Cr–Al–Y–Si powder has been patented. The powder is used as a heat-resistant sublayer of thermal protection coatings for blades of gas turbine engines. © Springer Science+Business Media New York 2013 |
abstractGer |
A more effective process of producing the Co–Cr–Al–Y–Si powder with 40–100 mm particles has been developed. This process yields 70% of this powder fraction, while other existing processes provide 50–60%. The proposed process involves melting of ingots in an electron-beam unit and their subsequent fragmentation using a press and strip rolling mill. It is shown that energy consumption is lower during this mechanical grinding compared to the use of crushers and mills and is almost 20 times higher in atomization. The developed process is waste-free: 40 μm powder fraction is remetled in the ingot production process. The method of producing the Co–Cr–Al–Y–Si powder has been patented. The powder is used as a heat-resistant sublayer of thermal protection coatings for blades of gas turbine engines. © Springer Science+Business Media New York 2013 |
abstract_unstemmed |
A more effective process of producing the Co–Cr–Al–Y–Si powder with 40–100 mm particles has been developed. This process yields 70% of this powder fraction, while other existing processes provide 50–60%. The proposed process involves melting of ingots in an electron-beam unit and their subsequent fragmentation using a press and strip rolling mill. It is shown that energy consumption is lower during this mechanical grinding compared to the use of crushers and mills and is almost 20 times higher in atomization. The developed process is waste-free: 40 μm powder fraction is remetled in the ingot production process. The method of producing the Co–Cr–Al–Y–Si powder has been patented. The powder is used as a heat-resistant sublayer of thermal protection coatings for blades of gas turbine engines. © Springer Science+Business Media New York 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_32 GBV_ILN_70 |
container_issue |
11-12 |
title_short |
Production of Co–Cr–Al–Y–Si powder alloys |
url |
https://doi.org/10.1007/s11106-013-9479-9 |
remote_bool |
false |
author2 |
Gogaev, K. A. Zatovskii, V. G. |
author2Str |
Gogaev, K. A. Zatovskii, V. G. |
ppnlink |
171221524 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11106-013-9479-9 |
up_date |
2024-07-04T02:54:28.511Z |
_version_ |
1803615384121638912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206115512X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504011109.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11106-013-9479-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206115512X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11106-013-9479-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grechanyuk, N. I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Production of Co–Cr–Al–Y–Si powder alloys</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A more effective process of producing the Co–Cr–Al–Y–Si powder with 40–100 mm particles has been developed. This process yields 70% of this powder fraction, while other existing processes provide 50–60%. The proposed process involves melting of ingots in an electron-beam unit and their subsequent fragmentation using a press and strip rolling mill. It is shown that energy consumption is lower during this mechanical grinding compared to the use of crushers and mills and is almost 20 times higher in atomization. The developed process is waste-free: 40 μm powder fraction is remetled in the ingot production process. The method of producing the Co–Cr–Al–Y–Si powder has been patented. The powder is used as a heat-resistant sublayer of thermal protection coatings for blades of gas turbine engines.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electron-beam remelting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">milling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">grinding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">press</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strip rolling mill</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">size analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gogaev, K. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zatovskii, V. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Powder metallurgy and metal ceramics</subfield><subfield code="d">Springer US, 1993</subfield><subfield code="g">51(2013), 11-12 vom: März, Seite 633-638</subfield><subfield code="w">(DE-627)171221524</subfield><subfield code="w">(DE-600)1167195-6</subfield><subfield code="w">(DE-576)038719614</subfield><subfield code="x">1068-1302</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:11-12</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:633-638</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11106-013-9479-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2013</subfield><subfield code="e">11-12</subfield><subfield code="c">03</subfield><subfield code="h">633-638</subfield></datafield></record></collection>
|
score |
7.399868 |