Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory
Abstract. In this paper we study the arithmetic of the Rikuna’s generic polynomial for the cyclic group of order n and obtain a generalized Kummer theory. It is useful under the condition that and ω∈k where ζ is a primitive n-th root of unity and ω=ζ+$ ζ^{−1} $. In particular, this result with ζ∈k i...
Ausführliche Beschreibung
Autor*in: |
Komatsu, Toru [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2004 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2004 |
---|
Übergeordnetes Werk: |
Enthalten in: Manuscripta mathematica - Springer-Verlag, 1969, 114(2004), 3 vom: 14. Juni, Seite 265-279 |
---|---|
Übergeordnetes Werk: |
volume:114 ; year:2004 ; number:3 ; day:14 ; month:06 ; pages:265-279 |
Links: |
---|
DOI / URN: |
10.1007/s00229-004-0460-2 |
---|
Katalog-ID: |
OLC2061285309 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2061285309 | ||
003 | DE-627 | ||
005 | 20230324003813.0 | ||
007 | tu | ||
008 | 200819s2004 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00229-004-0460-2 |2 doi | |
035 | |a (DE-627)OLC2061285309 | ||
035 | |a (DE-He213)s00229-004-0460-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 6730 |q VZ |2 rvk | ||
084 | |a SA 6730 |q VZ |2 rvk | ||
100 | 1 | |a Komatsu, Toru |e verfasserin |4 aut | |
245 | 1 | 0 | |a Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory |
264 | 1 | |c 2004 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2004 | ||
520 | |a Abstract. In this paper we study the arithmetic of the Rikuna’s generic polynomial for the cyclic group of order n and obtain a generalized Kummer theory. It is useful under the condition that and ω∈k where ζ is a primitive n-th root of unity and ω=ζ+$ ζ^{−1} $. In particular, this result with ζ∈k implies the classical Kummer theory. | ||
650 | 4 | |a Cyclic Group | |
650 | 4 | |a Generic Polynomial | |
650 | 4 | |a Kummer Theory | |
650 | 4 | |a Cyclic Polynomial | |
773 | 0 | 8 | |i Enthalten in |t Manuscripta mathematica |d Springer-Verlag, 1969 |g 114(2004), 3 vom: 14. Juni, Seite 265-279 |w (DE-627)129081388 |w (DE-600)3448-4 |w (DE-576)014414244 |x 0025-2611 |7 nnns |
773 | 1 | 8 | |g volume:114 |g year:2004 |g number:3 |g day:14 |g month:06 |g pages:265-279 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00229-004-0460-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4029 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
936 | r | v | |a SA 6730 |
936 | r | v | |a SA 6730 |
951 | |a AR | ||
952 | |d 114 |j 2004 |e 3 |b 14 |c 06 |h 265-279 |
author_variant |
t k tk |
---|---|
matchkey_str |
article:00252611:2004----::rtmtcfiuagnrcylcoyoilngnrlz |
hierarchy_sort_str |
2004 |
publishDate |
2004 |
allfields |
10.1007/s00229-004-0460-2 doi (DE-627)OLC2061285309 (DE-He213)s00229-004-0460-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 6730 VZ rvk SA 6730 VZ rvk Komatsu, Toru verfasserin aut Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2004 Abstract. In this paper we study the arithmetic of the Rikuna’s generic polynomial for the cyclic group of order n and obtain a generalized Kummer theory. It is useful under the condition that and ω∈k where ζ is a primitive n-th root of unity and ω=ζ+$ ζ^{−1} $. In particular, this result with ζ∈k implies the classical Kummer theory. Cyclic Group Generic Polynomial Kummer Theory Cyclic Polynomial Enthalten in Manuscripta mathematica Springer-Verlag, 1969 114(2004), 3 vom: 14. Juni, Seite 265-279 (DE-627)129081388 (DE-600)3448-4 (DE-576)014414244 0025-2611 nnns volume:114 year:2004 number:3 day:14 month:06 pages:265-279 https://doi.org/10.1007/s00229-004-0460-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 SA 6730 SA 6730 AR 114 2004 3 14 06 265-279 |
spelling |
10.1007/s00229-004-0460-2 doi (DE-627)OLC2061285309 (DE-He213)s00229-004-0460-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 6730 VZ rvk SA 6730 VZ rvk Komatsu, Toru verfasserin aut Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2004 Abstract. In this paper we study the arithmetic of the Rikuna’s generic polynomial for the cyclic group of order n and obtain a generalized Kummer theory. It is useful under the condition that and ω∈k where ζ is a primitive n-th root of unity and ω=ζ+$ ζ^{−1} $. In particular, this result with ζ∈k implies the classical Kummer theory. Cyclic Group Generic Polynomial Kummer Theory Cyclic Polynomial Enthalten in Manuscripta mathematica Springer-Verlag, 1969 114(2004), 3 vom: 14. Juni, Seite 265-279 (DE-627)129081388 (DE-600)3448-4 (DE-576)014414244 0025-2611 nnns volume:114 year:2004 number:3 day:14 month:06 pages:265-279 https://doi.org/10.1007/s00229-004-0460-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 SA 6730 SA 6730 AR 114 2004 3 14 06 265-279 |
allfields_unstemmed |
10.1007/s00229-004-0460-2 doi (DE-627)OLC2061285309 (DE-He213)s00229-004-0460-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 6730 VZ rvk SA 6730 VZ rvk Komatsu, Toru verfasserin aut Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2004 Abstract. In this paper we study the arithmetic of the Rikuna’s generic polynomial for the cyclic group of order n and obtain a generalized Kummer theory. It is useful under the condition that and ω∈k where ζ is a primitive n-th root of unity and ω=ζ+$ ζ^{−1} $. In particular, this result with ζ∈k implies the classical Kummer theory. Cyclic Group Generic Polynomial Kummer Theory Cyclic Polynomial Enthalten in Manuscripta mathematica Springer-Verlag, 1969 114(2004), 3 vom: 14. Juni, Seite 265-279 (DE-627)129081388 (DE-600)3448-4 (DE-576)014414244 0025-2611 nnns volume:114 year:2004 number:3 day:14 month:06 pages:265-279 https://doi.org/10.1007/s00229-004-0460-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 SA 6730 SA 6730 AR 114 2004 3 14 06 265-279 |
allfieldsGer |
10.1007/s00229-004-0460-2 doi (DE-627)OLC2061285309 (DE-He213)s00229-004-0460-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 6730 VZ rvk SA 6730 VZ rvk Komatsu, Toru verfasserin aut Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2004 Abstract. In this paper we study the arithmetic of the Rikuna’s generic polynomial for the cyclic group of order n and obtain a generalized Kummer theory. It is useful under the condition that and ω∈k where ζ is a primitive n-th root of unity and ω=ζ+$ ζ^{−1} $. In particular, this result with ζ∈k implies the classical Kummer theory. Cyclic Group Generic Polynomial Kummer Theory Cyclic Polynomial Enthalten in Manuscripta mathematica Springer-Verlag, 1969 114(2004), 3 vom: 14. Juni, Seite 265-279 (DE-627)129081388 (DE-600)3448-4 (DE-576)014414244 0025-2611 nnns volume:114 year:2004 number:3 day:14 month:06 pages:265-279 https://doi.org/10.1007/s00229-004-0460-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 SA 6730 SA 6730 AR 114 2004 3 14 06 265-279 |
allfieldsSound |
10.1007/s00229-004-0460-2 doi (DE-627)OLC2061285309 (DE-He213)s00229-004-0460-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 6730 VZ rvk SA 6730 VZ rvk Komatsu, Toru verfasserin aut Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2004 Abstract. In this paper we study the arithmetic of the Rikuna’s generic polynomial for the cyclic group of order n and obtain a generalized Kummer theory. It is useful under the condition that and ω∈k where ζ is a primitive n-th root of unity and ω=ζ+$ ζ^{−1} $. In particular, this result with ζ∈k implies the classical Kummer theory. Cyclic Group Generic Polynomial Kummer Theory Cyclic Polynomial Enthalten in Manuscripta mathematica Springer-Verlag, 1969 114(2004), 3 vom: 14. Juni, Seite 265-279 (DE-627)129081388 (DE-600)3448-4 (DE-576)014414244 0025-2611 nnns volume:114 year:2004 number:3 day:14 month:06 pages:265-279 https://doi.org/10.1007/s00229-004-0460-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 SA 6730 SA 6730 AR 114 2004 3 14 06 265-279 |
language |
English |
source |
Enthalten in Manuscripta mathematica 114(2004), 3 vom: 14. Juni, Seite 265-279 volume:114 year:2004 number:3 day:14 month:06 pages:265-279 |
sourceStr |
Enthalten in Manuscripta mathematica 114(2004), 3 vom: 14. Juni, Seite 265-279 volume:114 year:2004 number:3 day:14 month:06 pages:265-279 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cyclic Group Generic Polynomial Kummer Theory Cyclic Polynomial |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Manuscripta mathematica |
authorswithroles_txt_mv |
Komatsu, Toru @@aut@@ |
publishDateDaySort_date |
2004-06-14T00:00:00Z |
hierarchy_top_id |
129081388 |
dewey-sort |
3510 |
id |
OLC2061285309 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2061285309</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230324003813.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00229-004-0460-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2061285309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00229-004-0460-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6730</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6730</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Komatsu, Toru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. In this paper we study the arithmetic of the Rikuna’s generic polynomial for the cyclic group of order n and obtain a generalized Kummer theory. It is useful under the condition that and ω∈k where ζ is a primitive n-th root of unity and ω=ζ+$ ζ^{−1} $. In particular, this result with ζ∈k implies the classical Kummer theory.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclic Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generic Polynomial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kummer Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclic Polynomial</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Manuscripta mathematica</subfield><subfield code="d">Springer-Verlag, 1969</subfield><subfield code="g">114(2004), 3 vom: 14. Juni, Seite 265-279</subfield><subfield code="w">(DE-627)129081388</subfield><subfield code="w">(DE-600)3448-4</subfield><subfield code="w">(DE-576)014414244</subfield><subfield code="x">0025-2611</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:114</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:3</subfield><subfield code="g">day:14</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:265-279</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00229-004-0460-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6730</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6730</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">114</subfield><subfield code="j">2004</subfield><subfield code="e">3</subfield><subfield code="b">14</subfield><subfield code="c">06</subfield><subfield code="h">265-279</subfield></datafield></record></collection>
|
author |
Komatsu, Toru |
spellingShingle |
Komatsu, Toru ddc 510 ssgn 17,1 rvk SA 6730 misc Cyclic Group misc Generic Polynomial misc Kummer Theory misc Cyclic Polynomial Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory |
authorStr |
Komatsu, Toru |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129081388 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0025-2611 |
topic_title |
510 VZ 17,1 ssgn SA 6730 VZ rvk Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory Cyclic Group Generic Polynomial Kummer Theory Cyclic Polynomial |
topic |
ddc 510 ssgn 17,1 rvk SA 6730 misc Cyclic Group misc Generic Polynomial misc Kummer Theory misc Cyclic Polynomial |
topic_unstemmed |
ddc 510 ssgn 17,1 rvk SA 6730 misc Cyclic Group misc Generic Polynomial misc Kummer Theory misc Cyclic Polynomial |
topic_browse |
ddc 510 ssgn 17,1 rvk SA 6730 misc Cyclic Group misc Generic Polynomial misc Kummer Theory misc Cyclic Polynomial |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Manuscripta mathematica |
hierarchy_parent_id |
129081388 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Manuscripta mathematica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129081388 (DE-600)3448-4 (DE-576)014414244 |
title |
Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory |
ctrlnum |
(DE-627)OLC2061285309 (DE-He213)s00229-004-0460-2-p |
title_full |
Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory |
author_sort |
Komatsu, Toru |
journal |
Manuscripta mathematica |
journalStr |
Manuscripta mathematica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2004 |
contenttype_str_mv |
txt |
container_start_page |
265 |
author_browse |
Komatsu, Toru |
container_volume |
114 |
class |
510 VZ 17,1 ssgn SA 6730 VZ rvk |
format_se |
Aufsätze |
author-letter |
Komatsu, Toru |
doi_str_mv |
10.1007/s00229-004-0460-2 |
dewey-full |
510 |
title_sort |
arithmetic of rikuna’s generic cyclic polynomial and generalization of kummer theory |
title_auth |
Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory |
abstract |
Abstract. In this paper we study the arithmetic of the Rikuna’s generic polynomial for the cyclic group of order n and obtain a generalized Kummer theory. It is useful under the condition that and ω∈k where ζ is a primitive n-th root of unity and ω=ζ+$ ζ^{−1} $. In particular, this result with ζ∈k implies the classical Kummer theory. © Springer-Verlag Berlin Heidelberg 2004 |
abstractGer |
Abstract. In this paper we study the arithmetic of the Rikuna’s generic polynomial for the cyclic group of order n and obtain a generalized Kummer theory. It is useful under the condition that and ω∈k where ζ is a primitive n-th root of unity and ω=ζ+$ ζ^{−1} $. In particular, this result with ζ∈k implies the classical Kummer theory. © Springer-Verlag Berlin Heidelberg 2004 |
abstract_unstemmed |
Abstract. In this paper we study the arithmetic of the Rikuna’s generic polynomial for the cyclic group of order n and obtain a generalized Kummer theory. It is useful under the condition that and ω∈k where ζ is a primitive n-th root of unity and ω=ζ+$ ζ^{−1} $. In particular, this result with ζ∈k implies the classical Kummer theory. © Springer-Verlag Berlin Heidelberg 2004 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4029 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 |
container_issue |
3 |
title_short |
Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory |
url |
https://doi.org/10.1007/s00229-004-0460-2 |
remote_bool |
false |
ppnlink |
129081388 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00229-004-0460-2 |
up_date |
2024-07-04T03:12:57.230Z |
_version_ |
1803616546714550273 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2061285309</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230324003813.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00229-004-0460-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2061285309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00229-004-0460-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6730</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6730</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Komatsu, Toru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. In this paper we study the arithmetic of the Rikuna’s generic polynomial for the cyclic group of order n and obtain a generalized Kummer theory. It is useful under the condition that and ω∈k where ζ is a primitive n-th root of unity and ω=ζ+$ ζ^{−1} $. In particular, this result with ζ∈k implies the classical Kummer theory.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclic Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generic Polynomial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kummer Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclic Polynomial</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Manuscripta mathematica</subfield><subfield code="d">Springer-Verlag, 1969</subfield><subfield code="g">114(2004), 3 vom: 14. Juni, Seite 265-279</subfield><subfield code="w">(DE-627)129081388</subfield><subfield code="w">(DE-600)3448-4</subfield><subfield code="w">(DE-576)014414244</subfield><subfield code="x">0025-2611</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:114</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:3</subfield><subfield code="g">day:14</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:265-279</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00229-004-0460-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6730</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6730</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">114</subfield><subfield code="j">2004</subfield><subfield code="e">3</subfield><subfield code="b">14</subfield><subfield code="c">06</subfield><subfield code="h">265-279</subfield></datafield></record></collection>
|
score |
7.399728 |