A note on connections among criteria for asymmetrical factorials
Abstract Various optimal criteria have been proposed to rank asymmetrical fractional factorial designs. Among them, the generalized minimum aberration and the minimum moment aberration criteria are the most popular ones and have received much attention. Recently, Liu et al. (Stat Sin 16:1285–1297, 2...
Ausführliche Beschreibung
Autor*in: |
Pang, Fang [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Metrika - Springer-Verlag, 1958, 75(2010), 1 vom: 29. Apr., Seite 23-32 |
---|---|
Übergeordnetes Werk: |
volume:75 ; year:2010 ; number:1 ; day:29 ; month:04 ; pages:23-32 |
Links: |
---|
DOI / URN: |
10.1007/s00184-010-0312-x |
---|
Katalog-ID: |
OLC2061396844 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2061396844 | ||
003 | DE-627 | ||
005 | 20230323143521.0 | ||
007 | tu | ||
008 | 200820s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00184-010-0312-x |2 doi | |
035 | |a (DE-627)OLC2061396844 | ||
035 | |a (DE-He213)s00184-010-0312-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Pang, Fang |e verfasserin |4 aut | |
245 | 1 | 0 | |a A note on connections among criteria for asymmetrical factorials |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2010 | ||
520 | |a Abstract Various optimal criteria have been proposed to rank asymmetrical fractional factorial designs. Among them, the generalized minimum aberration and the minimum moment aberration criteria are the most popular ones and have received much attention. Recently, Liu et al. (Stat Sin 16:1285–1297, 2006) proposed the minimum χ2 criterion in terms of level-combinations. In this paper, the equivalency of the generalized minimum aberration and the minimum χ2 criteria is reported, which not only provides another justification for each other but also develops some theoretical results for designs with generalized minimum aberration and some lower bounds for the generalized wordlength pattern. Besides, an analytic relationship between generalized minimum aberration and minimum moment aberration is obtained for asymmetrical fractional factorial designs. | ||
650 | 4 | |a Generalized minimum aberration | |
650 | 4 | |a Minimum moment aberration | |
650 | 4 | |a Orthogonal array | |
650 | 4 | |a Saturated design | |
700 | 1 | |a Liu, Min-Qian |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Metrika |d Springer-Verlag, 1958 |g 75(2010), 1 vom: 29. Apr., Seite 23-32 |w (DE-627)12908171X |w (DE-600)3502-6 |w (DE-576)014414619 |x 0026-1335 |7 nnns |
773 | 1 | 8 | |g volume:75 |g year:2010 |g number:1 |g day:29 |g month:04 |g pages:23-32 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00184-010-0312-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_193 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4193 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
951 | |a AR | ||
952 | |d 75 |j 2010 |e 1 |b 29 |c 04 |h 23-32 |
author_variant |
f p fp m q l mql |
---|---|
matchkey_str |
article:00261335:2010----::ntocnetosmncieifrsmer |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s00184-010-0312-x doi (DE-627)OLC2061396844 (DE-He213)s00184-010-0312-x-p DE-627 ger DE-627 rakwb eng 510 VZ Pang, Fang verfasserin aut A note on connections among criteria for asymmetrical factorials 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract Various optimal criteria have been proposed to rank asymmetrical fractional factorial designs. Among them, the generalized minimum aberration and the minimum moment aberration criteria are the most popular ones and have received much attention. Recently, Liu et al. (Stat Sin 16:1285–1297, 2006) proposed the minimum χ2 criterion in terms of level-combinations. In this paper, the equivalency of the generalized minimum aberration and the minimum χ2 criteria is reported, which not only provides another justification for each other but also develops some theoretical results for designs with generalized minimum aberration and some lower bounds for the generalized wordlength pattern. Besides, an analytic relationship between generalized minimum aberration and minimum moment aberration is obtained for asymmetrical fractional factorial designs. Generalized minimum aberration Minimum moment aberration Orthogonal array Saturated design Liu, Min-Qian aut Enthalten in Metrika Springer-Verlag, 1958 75(2010), 1 vom: 29. Apr., Seite 23-32 (DE-627)12908171X (DE-600)3502-6 (DE-576)014414619 0026-1335 nnns volume:75 year:2010 number:1 day:29 month:04 pages:23-32 https://doi.org/10.1007/s00184-010-0312-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_70 GBV_ILN_100 GBV_ILN_193 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4324 GBV_ILN_4326 AR 75 2010 1 29 04 23-32 |
spelling |
10.1007/s00184-010-0312-x doi (DE-627)OLC2061396844 (DE-He213)s00184-010-0312-x-p DE-627 ger DE-627 rakwb eng 510 VZ Pang, Fang verfasserin aut A note on connections among criteria for asymmetrical factorials 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract Various optimal criteria have been proposed to rank asymmetrical fractional factorial designs. Among them, the generalized minimum aberration and the minimum moment aberration criteria are the most popular ones and have received much attention. Recently, Liu et al. (Stat Sin 16:1285–1297, 2006) proposed the minimum χ2 criterion in terms of level-combinations. In this paper, the equivalency of the generalized minimum aberration and the minimum χ2 criteria is reported, which not only provides another justification for each other but also develops some theoretical results for designs with generalized minimum aberration and some lower bounds for the generalized wordlength pattern. Besides, an analytic relationship between generalized minimum aberration and minimum moment aberration is obtained for asymmetrical fractional factorial designs. Generalized minimum aberration Minimum moment aberration Orthogonal array Saturated design Liu, Min-Qian aut Enthalten in Metrika Springer-Verlag, 1958 75(2010), 1 vom: 29. Apr., Seite 23-32 (DE-627)12908171X (DE-600)3502-6 (DE-576)014414619 0026-1335 nnns volume:75 year:2010 number:1 day:29 month:04 pages:23-32 https://doi.org/10.1007/s00184-010-0312-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_70 GBV_ILN_100 GBV_ILN_193 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4324 GBV_ILN_4326 AR 75 2010 1 29 04 23-32 |
allfields_unstemmed |
10.1007/s00184-010-0312-x doi (DE-627)OLC2061396844 (DE-He213)s00184-010-0312-x-p DE-627 ger DE-627 rakwb eng 510 VZ Pang, Fang verfasserin aut A note on connections among criteria for asymmetrical factorials 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract Various optimal criteria have been proposed to rank asymmetrical fractional factorial designs. Among them, the generalized minimum aberration and the minimum moment aberration criteria are the most popular ones and have received much attention. Recently, Liu et al. (Stat Sin 16:1285–1297, 2006) proposed the minimum χ2 criterion in terms of level-combinations. In this paper, the equivalency of the generalized minimum aberration and the minimum χ2 criteria is reported, which not only provides another justification for each other but also develops some theoretical results for designs with generalized minimum aberration and some lower bounds for the generalized wordlength pattern. Besides, an analytic relationship between generalized minimum aberration and minimum moment aberration is obtained for asymmetrical fractional factorial designs. Generalized minimum aberration Minimum moment aberration Orthogonal array Saturated design Liu, Min-Qian aut Enthalten in Metrika Springer-Verlag, 1958 75(2010), 1 vom: 29. Apr., Seite 23-32 (DE-627)12908171X (DE-600)3502-6 (DE-576)014414619 0026-1335 nnns volume:75 year:2010 number:1 day:29 month:04 pages:23-32 https://doi.org/10.1007/s00184-010-0312-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_70 GBV_ILN_100 GBV_ILN_193 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4324 GBV_ILN_4326 AR 75 2010 1 29 04 23-32 |
allfieldsGer |
10.1007/s00184-010-0312-x doi (DE-627)OLC2061396844 (DE-He213)s00184-010-0312-x-p DE-627 ger DE-627 rakwb eng 510 VZ Pang, Fang verfasserin aut A note on connections among criteria for asymmetrical factorials 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract Various optimal criteria have been proposed to rank asymmetrical fractional factorial designs. Among them, the generalized minimum aberration and the minimum moment aberration criteria are the most popular ones and have received much attention. Recently, Liu et al. (Stat Sin 16:1285–1297, 2006) proposed the minimum χ2 criterion in terms of level-combinations. In this paper, the equivalency of the generalized minimum aberration and the minimum χ2 criteria is reported, which not only provides another justification for each other but also develops some theoretical results for designs with generalized minimum aberration and some lower bounds for the generalized wordlength pattern. Besides, an analytic relationship between generalized minimum aberration and minimum moment aberration is obtained for asymmetrical fractional factorial designs. Generalized minimum aberration Minimum moment aberration Orthogonal array Saturated design Liu, Min-Qian aut Enthalten in Metrika Springer-Verlag, 1958 75(2010), 1 vom: 29. Apr., Seite 23-32 (DE-627)12908171X (DE-600)3502-6 (DE-576)014414619 0026-1335 nnns volume:75 year:2010 number:1 day:29 month:04 pages:23-32 https://doi.org/10.1007/s00184-010-0312-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_70 GBV_ILN_100 GBV_ILN_193 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4324 GBV_ILN_4326 AR 75 2010 1 29 04 23-32 |
allfieldsSound |
10.1007/s00184-010-0312-x doi (DE-627)OLC2061396844 (DE-He213)s00184-010-0312-x-p DE-627 ger DE-627 rakwb eng 510 VZ Pang, Fang verfasserin aut A note on connections among criteria for asymmetrical factorials 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract Various optimal criteria have been proposed to rank asymmetrical fractional factorial designs. Among them, the generalized minimum aberration and the minimum moment aberration criteria are the most popular ones and have received much attention. Recently, Liu et al. (Stat Sin 16:1285–1297, 2006) proposed the minimum χ2 criterion in terms of level-combinations. In this paper, the equivalency of the generalized minimum aberration and the minimum χ2 criteria is reported, which not only provides another justification for each other but also develops some theoretical results for designs with generalized minimum aberration and some lower bounds for the generalized wordlength pattern. Besides, an analytic relationship between generalized minimum aberration and minimum moment aberration is obtained for asymmetrical fractional factorial designs. Generalized minimum aberration Minimum moment aberration Orthogonal array Saturated design Liu, Min-Qian aut Enthalten in Metrika Springer-Verlag, 1958 75(2010), 1 vom: 29. Apr., Seite 23-32 (DE-627)12908171X (DE-600)3502-6 (DE-576)014414619 0026-1335 nnns volume:75 year:2010 number:1 day:29 month:04 pages:23-32 https://doi.org/10.1007/s00184-010-0312-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_70 GBV_ILN_100 GBV_ILN_193 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4324 GBV_ILN_4326 AR 75 2010 1 29 04 23-32 |
language |
English |
source |
Enthalten in Metrika 75(2010), 1 vom: 29. Apr., Seite 23-32 volume:75 year:2010 number:1 day:29 month:04 pages:23-32 |
sourceStr |
Enthalten in Metrika 75(2010), 1 vom: 29. Apr., Seite 23-32 volume:75 year:2010 number:1 day:29 month:04 pages:23-32 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Generalized minimum aberration Minimum moment aberration Orthogonal array Saturated design |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Metrika |
authorswithroles_txt_mv |
Pang, Fang @@aut@@ Liu, Min-Qian @@aut@@ |
publishDateDaySort_date |
2010-04-29T00:00:00Z |
hierarchy_top_id |
12908171X |
dewey-sort |
3510 |
id |
OLC2061396844 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2061396844</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323143521.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00184-010-0312-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2061396844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00184-010-0312-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pang, Fang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A note on connections among criteria for asymmetrical factorials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Various optimal criteria have been proposed to rank asymmetrical fractional factorial designs. Among them, the generalized minimum aberration and the minimum moment aberration criteria are the most popular ones and have received much attention. Recently, Liu et al. (Stat Sin 16:1285–1297, 2006) proposed the minimum χ2 criterion in terms of level-combinations. In this paper, the equivalency of the generalized minimum aberration and the minimum χ2 criteria is reported, which not only provides another justification for each other but also develops some theoretical results for designs with generalized minimum aberration and some lower bounds for the generalized wordlength pattern. Besides, an analytic relationship between generalized minimum aberration and minimum moment aberration is obtained for asymmetrical fractional factorial designs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized minimum aberration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimum moment aberration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal array</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Saturated design</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Min-Qian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metrika</subfield><subfield code="d">Springer-Verlag, 1958</subfield><subfield code="g">75(2010), 1 vom: 29. Apr., Seite 23-32</subfield><subfield code="w">(DE-627)12908171X</subfield><subfield code="w">(DE-600)3502-6</subfield><subfield code="w">(DE-576)014414619</subfield><subfield code="x">0026-1335</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:23-32</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00184-010-0312-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">04</subfield><subfield code="h">23-32</subfield></datafield></record></collection>
|
author |
Pang, Fang |
spellingShingle |
Pang, Fang ddc 510 misc Generalized minimum aberration misc Minimum moment aberration misc Orthogonal array misc Saturated design A note on connections among criteria for asymmetrical factorials |
authorStr |
Pang, Fang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12908171X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0026-1335 |
topic_title |
510 VZ A note on connections among criteria for asymmetrical factorials Generalized minimum aberration Minimum moment aberration Orthogonal array Saturated design |
topic |
ddc 510 misc Generalized minimum aberration misc Minimum moment aberration misc Orthogonal array misc Saturated design |
topic_unstemmed |
ddc 510 misc Generalized minimum aberration misc Minimum moment aberration misc Orthogonal array misc Saturated design |
topic_browse |
ddc 510 misc Generalized minimum aberration misc Minimum moment aberration misc Orthogonal array misc Saturated design |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Metrika |
hierarchy_parent_id |
12908171X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Metrika |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12908171X (DE-600)3502-6 (DE-576)014414619 |
title |
A note on connections among criteria for asymmetrical factorials |
ctrlnum |
(DE-627)OLC2061396844 (DE-He213)s00184-010-0312-x-p |
title_full |
A note on connections among criteria for asymmetrical factorials |
author_sort |
Pang, Fang |
journal |
Metrika |
journalStr |
Metrika |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
23 |
author_browse |
Pang, Fang Liu, Min-Qian |
container_volume |
75 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Pang, Fang |
doi_str_mv |
10.1007/s00184-010-0312-x |
dewey-full |
510 |
title_sort |
a note on connections among criteria for asymmetrical factorials |
title_auth |
A note on connections among criteria for asymmetrical factorials |
abstract |
Abstract Various optimal criteria have been proposed to rank asymmetrical fractional factorial designs. Among them, the generalized minimum aberration and the minimum moment aberration criteria are the most popular ones and have received much attention. Recently, Liu et al. (Stat Sin 16:1285–1297, 2006) proposed the minimum χ2 criterion in terms of level-combinations. In this paper, the equivalency of the generalized minimum aberration and the minimum χ2 criteria is reported, which not only provides another justification for each other but also develops some theoretical results for designs with generalized minimum aberration and some lower bounds for the generalized wordlength pattern. Besides, an analytic relationship between generalized minimum aberration and minimum moment aberration is obtained for asymmetrical fractional factorial designs. © Springer-Verlag 2010 |
abstractGer |
Abstract Various optimal criteria have been proposed to rank asymmetrical fractional factorial designs. Among them, the generalized minimum aberration and the minimum moment aberration criteria are the most popular ones and have received much attention. Recently, Liu et al. (Stat Sin 16:1285–1297, 2006) proposed the minimum χ2 criterion in terms of level-combinations. In this paper, the equivalency of the generalized minimum aberration and the minimum χ2 criteria is reported, which not only provides another justification for each other but also develops some theoretical results for designs with generalized minimum aberration and some lower bounds for the generalized wordlength pattern. Besides, an analytic relationship between generalized minimum aberration and minimum moment aberration is obtained for asymmetrical fractional factorial designs. © Springer-Verlag 2010 |
abstract_unstemmed |
Abstract Various optimal criteria have been proposed to rank asymmetrical fractional factorial designs. Among them, the generalized minimum aberration and the minimum moment aberration criteria are the most popular ones and have received much attention. Recently, Liu et al. (Stat Sin 16:1285–1297, 2006) proposed the minimum χ2 criterion in terms of level-combinations. In this paper, the equivalency of the generalized minimum aberration and the minimum χ2 criteria is reported, which not only provides another justification for each other but also develops some theoretical results for designs with generalized minimum aberration and some lower bounds for the generalized wordlength pattern. Besides, an analytic relationship between generalized minimum aberration and minimum moment aberration is obtained for asymmetrical fractional factorial designs. © Springer-Verlag 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_26 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_70 GBV_ILN_100 GBV_ILN_193 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4324 GBV_ILN_4326 |
container_issue |
1 |
title_short |
A note on connections among criteria for asymmetrical factorials |
url |
https://doi.org/10.1007/s00184-010-0312-x |
remote_bool |
false |
author2 |
Liu, Min-Qian |
author2Str |
Liu, Min-Qian |
ppnlink |
12908171X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00184-010-0312-x |
up_date |
2024-07-04T03:30:14.052Z |
_version_ |
1803617633890729984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2061396844</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323143521.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00184-010-0312-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2061396844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00184-010-0312-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pang, Fang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A note on connections among criteria for asymmetrical factorials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Various optimal criteria have been proposed to rank asymmetrical fractional factorial designs. Among them, the generalized minimum aberration and the minimum moment aberration criteria are the most popular ones and have received much attention. Recently, Liu et al. (Stat Sin 16:1285–1297, 2006) proposed the minimum χ2 criterion in terms of level-combinations. In this paper, the equivalency of the generalized minimum aberration and the minimum χ2 criteria is reported, which not only provides another justification for each other but also develops some theoretical results for designs with generalized minimum aberration and some lower bounds for the generalized wordlength pattern. Besides, an analytic relationship between generalized minimum aberration and minimum moment aberration is obtained for asymmetrical fractional factorial designs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized minimum aberration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimum moment aberration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal array</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Saturated design</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Min-Qian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metrika</subfield><subfield code="d">Springer-Verlag, 1958</subfield><subfield code="g">75(2010), 1 vom: 29. Apr., Seite 23-32</subfield><subfield code="w">(DE-627)12908171X</subfield><subfield code="w">(DE-600)3502-6</subfield><subfield code="w">(DE-576)014414619</subfield><subfield code="x">0026-1335</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:23-32</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00184-010-0312-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">04</subfield><subfield code="h">23-32</subfield></datafield></record></collection>
|
score |
7.4007654 |