A Bijective Proof of a Factorization Formula for Specialized Macdonald Polynomials
Abstract Let μ and ν = (ν1, . . . , νk) be partitions such that μ is obtained from ν by adding m parts of size r. Descouens and Morita proved algebraically that the modified Macdonald polynomials $${{\tilde{H}_\mu}(X; q, t)}$$ satisfy the identity $${{\tilde{H}_\mu} = \tilde{H}_\nu \tilde{H}_{(r^m)}...
Ausführliche Beschreibung
Autor*in: |
Loehr, Nicholas A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Anmerkung: |
© Springer Basel 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of combinatorics - SP Birkhäuser Verlag Basel, 1997, 16(2012), 4 vom: 05. Okt., Seite 815-828 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2012 ; number:4 ; day:05 ; month:10 ; pages:815-828 |
Links: |
---|
DOI / URN: |
10.1007/s00026-012-0162-5 |
---|
Katalog-ID: |
OLC2061534309 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2061534309 | ||
003 | DE-627 | ||
005 | 20230323113627.0 | ||
007 | tu | ||
008 | 200819s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00026-012-0162-5 |2 doi | |
035 | |a (DE-627)OLC2061534309 | ||
035 | |a (DE-He213)s00026-012-0162-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Loehr, Nicholas A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Bijective Proof of a Factorization Formula for Specialized Macdonald Polynomials |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Basel 2012 | ||
520 | |a Abstract Let μ and ν = (ν1, . . . , νk) be partitions such that μ is obtained from ν by adding m parts of size r. Descouens and Morita proved algebraically that the modified Macdonald polynomials $${{\tilde{H}_\mu}(X; q, t)}$$ satisfy the identity $${{\tilde{H}_\mu} = \tilde{H}_\nu \tilde{H}_{(r^m)}}$$ when the parameter t is specialize to an mth root of unity. Descouens, Morita, and Numata proved this formula bijectively when r ≤ νk and $${r \in \{1, 2\}}$$ . This note gives a bijective proof of the formula for all r ≤ νk. | ||
700 | 1 | |a Niese, Elizabeth |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annals of combinatorics |d SP Birkhäuser Verlag Basel, 1997 |g 16(2012), 4 vom: 05. Okt., Seite 815-828 |w (DE-627)234146176 |w (DE-600)1394631-6 |w (DE-576)094078408 |x 0218-0006 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2012 |g number:4 |g day:05 |g month:10 |g pages:815-828 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00026-012-0162-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 16 |j 2012 |e 4 |b 05 |c 10 |h 815-828 |
author_variant |
n a l na nal e n en |
---|---|
matchkey_str |
article:02180006:2012----::bjcierooaatrztofruaoseilzda |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s00026-012-0162-5 doi (DE-627)OLC2061534309 (DE-He213)s00026-012-0162-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Loehr, Nicholas A. verfasserin aut A Bijective Proof of a Factorization Formula for Specialized Macdonald Polynomials 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2012 Abstract Let μ and ν = (ν1, . . . , νk) be partitions such that μ is obtained from ν by adding m parts of size r. Descouens and Morita proved algebraically that the modified Macdonald polynomials $${{\tilde{H}_\mu}(X; q, t)}$$ satisfy the identity $${{\tilde{H}_\mu} = \tilde{H}_\nu \tilde{H}_{(r^m)}}$$ when the parameter t is specialize to an mth root of unity. Descouens, Morita, and Numata proved this formula bijectively when r ≤ νk and $${r \in \{1, 2\}}$$ . This note gives a bijective proof of the formula for all r ≤ νk. Niese, Elizabeth aut Enthalten in Annals of combinatorics SP Birkhäuser Verlag Basel, 1997 16(2012), 4 vom: 05. Okt., Seite 815-828 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:16 year:2012 number:4 day:05 month:10 pages:815-828 https://doi.org/10.1007/s00026-012-0162-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 GBV_ILN_4277 AR 16 2012 4 05 10 815-828 |
spelling |
10.1007/s00026-012-0162-5 doi (DE-627)OLC2061534309 (DE-He213)s00026-012-0162-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Loehr, Nicholas A. verfasserin aut A Bijective Proof of a Factorization Formula for Specialized Macdonald Polynomials 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2012 Abstract Let μ and ν = (ν1, . . . , νk) be partitions such that μ is obtained from ν by adding m parts of size r. Descouens and Morita proved algebraically that the modified Macdonald polynomials $${{\tilde{H}_\mu}(X; q, t)}$$ satisfy the identity $${{\tilde{H}_\mu} = \tilde{H}_\nu \tilde{H}_{(r^m)}}$$ when the parameter t is specialize to an mth root of unity. Descouens, Morita, and Numata proved this formula bijectively when r ≤ νk and $${r \in \{1, 2\}}$$ . This note gives a bijective proof of the formula for all r ≤ νk. Niese, Elizabeth aut Enthalten in Annals of combinatorics SP Birkhäuser Verlag Basel, 1997 16(2012), 4 vom: 05. Okt., Seite 815-828 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:16 year:2012 number:4 day:05 month:10 pages:815-828 https://doi.org/10.1007/s00026-012-0162-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 GBV_ILN_4277 AR 16 2012 4 05 10 815-828 |
allfields_unstemmed |
10.1007/s00026-012-0162-5 doi (DE-627)OLC2061534309 (DE-He213)s00026-012-0162-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Loehr, Nicholas A. verfasserin aut A Bijective Proof of a Factorization Formula for Specialized Macdonald Polynomials 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2012 Abstract Let μ and ν = (ν1, . . . , νk) be partitions such that μ is obtained from ν by adding m parts of size r. Descouens and Morita proved algebraically that the modified Macdonald polynomials $${{\tilde{H}_\mu}(X; q, t)}$$ satisfy the identity $${{\tilde{H}_\mu} = \tilde{H}_\nu \tilde{H}_{(r^m)}}$$ when the parameter t is specialize to an mth root of unity. Descouens, Morita, and Numata proved this formula bijectively when r ≤ νk and $${r \in \{1, 2\}}$$ . This note gives a bijective proof of the formula for all r ≤ νk. Niese, Elizabeth aut Enthalten in Annals of combinatorics SP Birkhäuser Verlag Basel, 1997 16(2012), 4 vom: 05. Okt., Seite 815-828 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:16 year:2012 number:4 day:05 month:10 pages:815-828 https://doi.org/10.1007/s00026-012-0162-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 GBV_ILN_4277 AR 16 2012 4 05 10 815-828 |
allfieldsGer |
10.1007/s00026-012-0162-5 doi (DE-627)OLC2061534309 (DE-He213)s00026-012-0162-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Loehr, Nicholas A. verfasserin aut A Bijective Proof of a Factorization Formula for Specialized Macdonald Polynomials 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2012 Abstract Let μ and ν = (ν1, . . . , νk) be partitions such that μ is obtained from ν by adding m parts of size r. Descouens and Morita proved algebraically that the modified Macdonald polynomials $${{\tilde{H}_\mu}(X; q, t)}$$ satisfy the identity $${{\tilde{H}_\mu} = \tilde{H}_\nu \tilde{H}_{(r^m)}}$$ when the parameter t is specialize to an mth root of unity. Descouens, Morita, and Numata proved this formula bijectively when r ≤ νk and $${r \in \{1, 2\}}$$ . This note gives a bijective proof of the formula for all r ≤ νk. Niese, Elizabeth aut Enthalten in Annals of combinatorics SP Birkhäuser Verlag Basel, 1997 16(2012), 4 vom: 05. Okt., Seite 815-828 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:16 year:2012 number:4 day:05 month:10 pages:815-828 https://doi.org/10.1007/s00026-012-0162-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 GBV_ILN_4277 AR 16 2012 4 05 10 815-828 |
allfieldsSound |
10.1007/s00026-012-0162-5 doi (DE-627)OLC2061534309 (DE-He213)s00026-012-0162-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Loehr, Nicholas A. verfasserin aut A Bijective Proof of a Factorization Formula for Specialized Macdonald Polynomials 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Basel 2012 Abstract Let μ and ν = (ν1, . . . , νk) be partitions such that μ is obtained from ν by adding m parts of size r. Descouens and Morita proved algebraically that the modified Macdonald polynomials $${{\tilde{H}_\mu}(X; q, t)}$$ satisfy the identity $${{\tilde{H}_\mu} = \tilde{H}_\nu \tilde{H}_{(r^m)}}$$ when the parameter t is specialize to an mth root of unity. Descouens, Morita, and Numata proved this formula bijectively when r ≤ νk and $${r \in \{1, 2\}}$$ . This note gives a bijective proof of the formula for all r ≤ νk. Niese, Elizabeth aut Enthalten in Annals of combinatorics SP Birkhäuser Verlag Basel, 1997 16(2012), 4 vom: 05. Okt., Seite 815-828 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:16 year:2012 number:4 day:05 month:10 pages:815-828 https://doi.org/10.1007/s00026-012-0162-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 GBV_ILN_4277 AR 16 2012 4 05 10 815-828 |
language |
English |
source |
Enthalten in Annals of combinatorics 16(2012), 4 vom: 05. Okt., Seite 815-828 volume:16 year:2012 number:4 day:05 month:10 pages:815-828 |
sourceStr |
Enthalten in Annals of combinatorics 16(2012), 4 vom: 05. Okt., Seite 815-828 volume:16 year:2012 number:4 day:05 month:10 pages:815-828 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Annals of combinatorics |
authorswithroles_txt_mv |
Loehr, Nicholas A. @@aut@@ Niese, Elizabeth @@aut@@ |
publishDateDaySort_date |
2012-10-05T00:00:00Z |
hierarchy_top_id |
234146176 |
dewey-sort |
3510 |
id |
OLC2061534309 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2061534309</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113627.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00026-012-0162-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2061534309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00026-012-0162-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Loehr, Nicholas A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Bijective Proof of a Factorization Formula for Specialized Macdonald Polynomials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Basel 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let μ and ν = (ν1, . . . , νk) be partitions such that μ is obtained from ν by adding m parts of size r. Descouens and Morita proved algebraically that the modified Macdonald polynomials $${{\tilde{H}_\mu}(X; q, t)}$$ satisfy the identity $${{\tilde{H}_\mu} = \tilde{H}_\nu \tilde{H}_{(r^m)}}$$ when the parameter t is specialize to an mth root of unity. Descouens, Morita, and Numata proved this formula bijectively when r ≤ νk and $${r \in \{1, 2\}}$$ . This note gives a bijective proof of the formula for all r ≤ νk.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niese, Elizabeth</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of combinatorics</subfield><subfield code="d">SP Birkhäuser Verlag Basel, 1997</subfield><subfield code="g">16(2012), 4 vom: 05. Okt., Seite 815-828</subfield><subfield code="w">(DE-627)234146176</subfield><subfield code="w">(DE-600)1394631-6</subfield><subfield code="w">(DE-576)094078408</subfield><subfield code="x">0218-0006</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:4</subfield><subfield code="g">day:05</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:815-828</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00026-012-0162-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2012</subfield><subfield code="e">4</subfield><subfield code="b">05</subfield><subfield code="c">10</subfield><subfield code="h">815-828</subfield></datafield></record></collection>
|
author |
Loehr, Nicholas A. |
spellingShingle |
Loehr, Nicholas A. ddc 510 ssgn 17,1 A Bijective Proof of a Factorization Formula for Specialized Macdonald Polynomials |
authorStr |
Loehr, Nicholas A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)234146176 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0218-0006 |
topic_title |
510 VZ 17,1 ssgn A Bijective Proof of a Factorization Formula for Specialized Macdonald Polynomials |
topic |
ddc 510 ssgn 17,1 |
topic_unstemmed |
ddc 510 ssgn 17,1 |
topic_browse |
ddc 510 ssgn 17,1 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Annals of combinatorics |
hierarchy_parent_id |
234146176 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Annals of combinatorics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 |
title |
A Bijective Proof of a Factorization Formula for Specialized Macdonald Polynomials |
ctrlnum |
(DE-627)OLC2061534309 (DE-He213)s00026-012-0162-5-p |
title_full |
A Bijective Proof of a Factorization Formula for Specialized Macdonald Polynomials |
author_sort |
Loehr, Nicholas A. |
journal |
Annals of combinatorics |
journalStr |
Annals of combinatorics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
815 |
author_browse |
Loehr, Nicholas A. Niese, Elizabeth |
container_volume |
16 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Loehr, Nicholas A. |
doi_str_mv |
10.1007/s00026-012-0162-5 |
dewey-full |
510 |
title_sort |
a bijective proof of a factorization formula for specialized macdonald polynomials |
title_auth |
A Bijective Proof of a Factorization Formula for Specialized Macdonald Polynomials |
abstract |
Abstract Let μ and ν = (ν1, . . . , νk) be partitions such that μ is obtained from ν by adding m parts of size r. Descouens and Morita proved algebraically that the modified Macdonald polynomials $${{\tilde{H}_\mu}(X; q, t)}$$ satisfy the identity $${{\tilde{H}_\mu} = \tilde{H}_\nu \tilde{H}_{(r^m)}}$$ when the parameter t is specialize to an mth root of unity. Descouens, Morita, and Numata proved this formula bijectively when r ≤ νk and $${r \in \{1, 2\}}$$ . This note gives a bijective proof of the formula for all r ≤ νk. © Springer Basel 2012 |
abstractGer |
Abstract Let μ and ν = (ν1, . . . , νk) be partitions such that μ is obtained from ν by adding m parts of size r. Descouens and Morita proved algebraically that the modified Macdonald polynomials $${{\tilde{H}_\mu}(X; q, t)}$$ satisfy the identity $${{\tilde{H}_\mu} = \tilde{H}_\nu \tilde{H}_{(r^m)}}$$ when the parameter t is specialize to an mth root of unity. Descouens, Morita, and Numata proved this formula bijectively when r ≤ νk and $${r \in \{1, 2\}}$$ . This note gives a bijective proof of the formula for all r ≤ νk. © Springer Basel 2012 |
abstract_unstemmed |
Abstract Let μ and ν = (ν1, . . . , νk) be partitions such that μ is obtained from ν by adding m parts of size r. Descouens and Morita proved algebraically that the modified Macdonald polynomials $${{\tilde{H}_\mu}(X; q, t)}$$ satisfy the identity $${{\tilde{H}_\mu} = \tilde{H}_\nu \tilde{H}_{(r^m)}}$$ when the parameter t is specialize to an mth root of unity. Descouens, Morita, and Numata proved this formula bijectively when r ≤ νk and $${r \in \{1, 2\}}$$ . This note gives a bijective proof of the formula for all r ≤ νk. © Springer Basel 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 GBV_ILN_4277 |
container_issue |
4 |
title_short |
A Bijective Proof of a Factorization Formula for Specialized Macdonald Polynomials |
url |
https://doi.org/10.1007/s00026-012-0162-5 |
remote_bool |
false |
author2 |
Niese, Elizabeth |
author2Str |
Niese, Elizabeth |
ppnlink |
234146176 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00026-012-0162-5 |
up_date |
2024-07-04T03:49:12.605Z |
_version_ |
1803618827743789056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2061534309</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113627.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00026-012-0162-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2061534309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00026-012-0162-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Loehr, Nicholas A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Bijective Proof of a Factorization Formula for Specialized Macdonald Polynomials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Basel 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let μ and ν = (ν1, . . . , νk) be partitions such that μ is obtained from ν by adding m parts of size r. Descouens and Morita proved algebraically that the modified Macdonald polynomials $${{\tilde{H}_\mu}(X; q, t)}$$ satisfy the identity $${{\tilde{H}_\mu} = \tilde{H}_\nu \tilde{H}_{(r^m)}}$$ when the parameter t is specialize to an mth root of unity. Descouens, Morita, and Numata proved this formula bijectively when r ≤ νk and $${r \in \{1, 2\}}$$ . This note gives a bijective proof of the formula for all r ≤ νk.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niese, Elizabeth</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of combinatorics</subfield><subfield code="d">SP Birkhäuser Verlag Basel, 1997</subfield><subfield code="g">16(2012), 4 vom: 05. Okt., Seite 815-828</subfield><subfield code="w">(DE-627)234146176</subfield><subfield code="w">(DE-600)1394631-6</subfield><subfield code="w">(DE-576)094078408</subfield><subfield code="x">0218-0006</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:4</subfield><subfield code="g">day:05</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:815-828</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00026-012-0162-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2012</subfield><subfield code="e">4</subfield><subfield code="b">05</subfield><subfield code="c">10</subfield><subfield code="h">815-828</subfield></datafield></record></collection>
|
score |
7.401101 |