A Formula for the Specialization of Skew Schur Functions
Abstract We give a formula for $${s_{\lambda/\mu}(1, q, q^{2},\ldots) /s_{\lambda}(1, q, q^{2},\ldots)}$$, which generalizes a result of Okounkov and Olshanski about $${f^{\lambda/\mu} / f ^{\lambda}}$$.
Autor*in: |
Chen, Xiaomei [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer International Publishing 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of combinatorics - Springer International Publishing, 1997, 20(2016), 3 vom: 28. Apr., Seite 539-548 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2016 ; number:3 ; day:28 ; month:04 ; pages:539-548 |
Links: |
---|
DOI / URN: |
10.1007/s00026-016-0312-2 |
---|
Katalog-ID: |
OLC2061535909 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2061535909 | ||
003 | DE-627 | ||
005 | 20230323113644.0 | ||
007 | tu | ||
008 | 200819s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00026-016-0312-2 |2 doi | |
035 | |a (DE-627)OLC2061535909 | ||
035 | |a (DE-He213)s00026-016-0312-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Chen, Xiaomei |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Formula for the Specialization of Skew Schur Functions |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer International Publishing 2016 | ||
520 | |a Abstract We give a formula for $${s_{\lambda/\mu}(1, q, q^{2},\ldots) /s_{\lambda}(1, q, q^{2},\ldots)}$$, which generalizes a result of Okounkov and Olshanski about $${f^{\lambda/\mu} / f ^{\lambda}}$$. | ||
650 | 4 | |a skew Schur function | |
650 | 4 | |a -analogue | |
650 | 4 | |a jeu de taquin | |
700 | 1 | |a Stanley, Richard P. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annals of combinatorics |d Springer International Publishing, 1997 |g 20(2016), 3 vom: 28. Apr., Seite 539-548 |w (DE-627)234146176 |w (DE-600)1394631-6 |w (DE-576)094078408 |x 0218-0006 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2016 |g number:3 |g day:28 |g month:04 |g pages:539-548 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00026-016-0312-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2088 | ||
951 | |a AR | ||
952 | |d 20 |j 2016 |e 3 |b 28 |c 04 |h 539-548 |
author_variant |
x c xc r p s rp rps |
---|---|
matchkey_str |
article:02180006:2016----::fruaotepcaiainfkwc |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s00026-016-0312-2 doi (DE-627)OLC2061535909 (DE-He213)s00026-016-0312-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Chen, Xiaomei verfasserin aut A Formula for the Specialization of Skew Schur Functions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing 2016 Abstract We give a formula for $${s_{\lambda/\mu}(1, q, q^{2},\ldots) /s_{\lambda}(1, q, q^{2},\ldots)}$$, which generalizes a result of Okounkov and Olshanski about $${f^{\lambda/\mu} / f ^{\lambda}}$$. skew Schur function -analogue jeu de taquin Stanley, Richard P. aut Enthalten in Annals of combinatorics Springer International Publishing, 1997 20(2016), 3 vom: 28. Apr., Seite 539-548 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:20 year:2016 number:3 day:28 month:04 pages:539-548 https://doi.org/10.1007/s00026-016-0312-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 AR 20 2016 3 28 04 539-548 |
spelling |
10.1007/s00026-016-0312-2 doi (DE-627)OLC2061535909 (DE-He213)s00026-016-0312-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Chen, Xiaomei verfasserin aut A Formula for the Specialization of Skew Schur Functions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing 2016 Abstract We give a formula for $${s_{\lambda/\mu}(1, q, q^{2},\ldots) /s_{\lambda}(1, q, q^{2},\ldots)}$$, which generalizes a result of Okounkov and Olshanski about $${f^{\lambda/\mu} / f ^{\lambda}}$$. skew Schur function -analogue jeu de taquin Stanley, Richard P. aut Enthalten in Annals of combinatorics Springer International Publishing, 1997 20(2016), 3 vom: 28. Apr., Seite 539-548 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:20 year:2016 number:3 day:28 month:04 pages:539-548 https://doi.org/10.1007/s00026-016-0312-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 AR 20 2016 3 28 04 539-548 |
allfields_unstemmed |
10.1007/s00026-016-0312-2 doi (DE-627)OLC2061535909 (DE-He213)s00026-016-0312-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Chen, Xiaomei verfasserin aut A Formula for the Specialization of Skew Schur Functions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing 2016 Abstract We give a formula for $${s_{\lambda/\mu}(1, q, q^{2},\ldots) /s_{\lambda}(1, q, q^{2},\ldots)}$$, which generalizes a result of Okounkov and Olshanski about $${f^{\lambda/\mu} / f ^{\lambda}}$$. skew Schur function -analogue jeu de taquin Stanley, Richard P. aut Enthalten in Annals of combinatorics Springer International Publishing, 1997 20(2016), 3 vom: 28. Apr., Seite 539-548 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:20 year:2016 number:3 day:28 month:04 pages:539-548 https://doi.org/10.1007/s00026-016-0312-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 AR 20 2016 3 28 04 539-548 |
allfieldsGer |
10.1007/s00026-016-0312-2 doi (DE-627)OLC2061535909 (DE-He213)s00026-016-0312-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Chen, Xiaomei verfasserin aut A Formula for the Specialization of Skew Schur Functions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing 2016 Abstract We give a formula for $${s_{\lambda/\mu}(1, q, q^{2},\ldots) /s_{\lambda}(1, q, q^{2},\ldots)}$$, which generalizes a result of Okounkov and Olshanski about $${f^{\lambda/\mu} / f ^{\lambda}}$$. skew Schur function -analogue jeu de taquin Stanley, Richard P. aut Enthalten in Annals of combinatorics Springer International Publishing, 1997 20(2016), 3 vom: 28. Apr., Seite 539-548 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:20 year:2016 number:3 day:28 month:04 pages:539-548 https://doi.org/10.1007/s00026-016-0312-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 AR 20 2016 3 28 04 539-548 |
allfieldsSound |
10.1007/s00026-016-0312-2 doi (DE-627)OLC2061535909 (DE-He213)s00026-016-0312-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Chen, Xiaomei verfasserin aut A Formula for the Specialization of Skew Schur Functions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing 2016 Abstract We give a formula for $${s_{\lambda/\mu}(1, q, q^{2},\ldots) /s_{\lambda}(1, q, q^{2},\ldots)}$$, which generalizes a result of Okounkov and Olshanski about $${f^{\lambda/\mu} / f ^{\lambda}}$$. skew Schur function -analogue jeu de taquin Stanley, Richard P. aut Enthalten in Annals of combinatorics Springer International Publishing, 1997 20(2016), 3 vom: 28. Apr., Seite 539-548 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:20 year:2016 number:3 day:28 month:04 pages:539-548 https://doi.org/10.1007/s00026-016-0312-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 AR 20 2016 3 28 04 539-548 |
language |
English |
source |
Enthalten in Annals of combinatorics 20(2016), 3 vom: 28. Apr., Seite 539-548 volume:20 year:2016 number:3 day:28 month:04 pages:539-548 |
sourceStr |
Enthalten in Annals of combinatorics 20(2016), 3 vom: 28. Apr., Seite 539-548 volume:20 year:2016 number:3 day:28 month:04 pages:539-548 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
skew Schur function -analogue jeu de taquin |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Annals of combinatorics |
authorswithroles_txt_mv |
Chen, Xiaomei @@aut@@ Stanley, Richard P. @@aut@@ |
publishDateDaySort_date |
2016-04-28T00:00:00Z |
hierarchy_top_id |
234146176 |
dewey-sort |
3510 |
id |
OLC2061535909 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2061535909</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113644.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00026-016-0312-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2061535909</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00026-016-0312-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Xiaomei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Formula for the Specialization of Skew Schur Functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer International Publishing 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We give a formula for $${s_{\lambda/\mu}(1, q, q^{2},\ldots) /s_{\lambda}(1, q, q^{2},\ldots)}$$, which generalizes a result of Okounkov and Olshanski about $${f^{\lambda/\mu} / f ^{\lambda}}$$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">skew Schur function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-analogue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">jeu de taquin</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stanley, Richard P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of combinatorics</subfield><subfield code="d">Springer International Publishing, 1997</subfield><subfield code="g">20(2016), 3 vom: 28. Apr., Seite 539-548</subfield><subfield code="w">(DE-627)234146176</subfield><subfield code="w">(DE-600)1394631-6</subfield><subfield code="w">(DE-576)094078408</subfield><subfield code="x">0218-0006</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:28</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:539-548</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00026-016-0312-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">28</subfield><subfield code="c">04</subfield><subfield code="h">539-548</subfield></datafield></record></collection>
|
author |
Chen, Xiaomei |
spellingShingle |
Chen, Xiaomei ddc 510 ssgn 17,1 misc skew Schur function misc -analogue misc jeu de taquin A Formula for the Specialization of Skew Schur Functions |
authorStr |
Chen, Xiaomei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)234146176 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0218-0006 |
topic_title |
510 VZ 17,1 ssgn A Formula for the Specialization of Skew Schur Functions skew Schur function -analogue jeu de taquin |
topic |
ddc 510 ssgn 17,1 misc skew Schur function misc -analogue misc jeu de taquin |
topic_unstemmed |
ddc 510 ssgn 17,1 misc skew Schur function misc -analogue misc jeu de taquin |
topic_browse |
ddc 510 ssgn 17,1 misc skew Schur function misc -analogue misc jeu de taquin |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Annals of combinatorics |
hierarchy_parent_id |
234146176 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Annals of combinatorics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 |
title |
A Formula for the Specialization of Skew Schur Functions |
ctrlnum |
(DE-627)OLC2061535909 (DE-He213)s00026-016-0312-2-p |
title_full |
A Formula for the Specialization of Skew Schur Functions |
author_sort |
Chen, Xiaomei |
journal |
Annals of combinatorics |
journalStr |
Annals of combinatorics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
539 |
author_browse |
Chen, Xiaomei Stanley, Richard P. |
container_volume |
20 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Chen, Xiaomei |
doi_str_mv |
10.1007/s00026-016-0312-2 |
dewey-full |
510 |
title_sort |
a formula for the specialization of skew schur functions |
title_auth |
A Formula for the Specialization of Skew Schur Functions |
abstract |
Abstract We give a formula for $${s_{\lambda/\mu}(1, q, q^{2},\ldots) /s_{\lambda}(1, q, q^{2},\ldots)}$$, which generalizes a result of Okounkov and Olshanski about $${f^{\lambda/\mu} / f ^{\lambda}}$$. © Springer International Publishing 2016 |
abstractGer |
Abstract We give a formula for $${s_{\lambda/\mu}(1, q, q^{2},\ldots) /s_{\lambda}(1, q, q^{2},\ldots)}$$, which generalizes a result of Okounkov and Olshanski about $${f^{\lambda/\mu} / f ^{\lambda}}$$. © Springer International Publishing 2016 |
abstract_unstemmed |
Abstract We give a formula for $${s_{\lambda/\mu}(1, q, q^{2},\ldots) /s_{\lambda}(1, q, q^{2},\ldots)}$$, which generalizes a result of Okounkov and Olshanski about $${f^{\lambda/\mu} / f ^{\lambda}}$$. © Springer International Publishing 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 |
container_issue |
3 |
title_short |
A Formula for the Specialization of Skew Schur Functions |
url |
https://doi.org/10.1007/s00026-016-0312-2 |
remote_bool |
false |
author2 |
Stanley, Richard P. |
author2Str |
Stanley, Richard P. |
ppnlink |
234146176 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00026-016-0312-2 |
up_date |
2024-07-04T03:49:23.639Z |
_version_ |
1803618839329505280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2061535909</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113644.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00026-016-0312-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2061535909</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00026-016-0312-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Xiaomei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Formula for the Specialization of Skew Schur Functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer International Publishing 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We give a formula for $${s_{\lambda/\mu}(1, q, q^{2},\ldots) /s_{\lambda}(1, q, q^{2},\ldots)}$$, which generalizes a result of Okounkov and Olshanski about $${f^{\lambda/\mu} / f ^{\lambda}}$$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">skew Schur function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-analogue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">jeu de taquin</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stanley, Richard P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of combinatorics</subfield><subfield code="d">Springer International Publishing, 1997</subfield><subfield code="g">20(2016), 3 vom: 28. Apr., Seite 539-548</subfield><subfield code="w">(DE-627)234146176</subfield><subfield code="w">(DE-600)1394631-6</subfield><subfield code="w">(DE-576)094078408</subfield><subfield code="x">0218-0006</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:28</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:539-548</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00026-016-0312-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">28</subfield><subfield code="c">04</subfield><subfield code="h">539-548</subfield></datafield></record></collection>
|
score |
7.3985195 |