On Semi-Finite Hexagons of Order (2, t) Containing a Subhexagon
Abstract The research in this paper was motivated by one of the most important open problems in the theory of generalized polygons, namely the existence problem for semi–finite thick generalized polygons. We show here that no semi–finite generalized hexagon of order (2, t) can have a subhexagon H of...
Ausführliche Beschreibung
Autor*in: |
Bishnoi, Anurag [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer International Publishing 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of combinatorics - Springer International Publishing, 1997, 20(2016), 3 vom: 07. Mai, Seite 433-452 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2016 ; number:3 ; day:07 ; month:05 ; pages:433-452 |
Links: |
---|
DOI / URN: |
10.1007/s00026-016-0315-z |
---|
Katalog-ID: |
OLC2061535941 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2061535941 | ||
003 | DE-627 | ||
005 | 20230323113644.0 | ||
007 | tu | ||
008 | 200819s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00026-016-0315-z |2 doi | |
035 | |a (DE-627)OLC2061535941 | ||
035 | |a (DE-He213)s00026-016-0315-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Bishnoi, Anurag |e verfasserin |4 aut | |
245 | 1 | 0 | |a On Semi-Finite Hexagons of Order (2, t) Containing a Subhexagon |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer International Publishing 2016 | ||
520 | |a Abstract The research in this paper was motivated by one of the most important open problems in the theory of generalized polygons, namely the existence problem for semi–finite thick generalized polygons. We show here that no semi–finite generalized hexagon of order (2, t) can have a subhexagon H of order 2. Such a subhexagon is necessarily isomorphic to the split Cayley generalized hexagon H(2) or its point–line dual HD(2). In fact, the employed techniques allow us to prove a stronger result. We show that every near hexagon $${\mathcal{S}}$$ of order (2, t) which contains a generalized hexagon H of order 2 as an isometrically embedded subgeometry must be finite. Moreover, if $${H \cong H^{D}}$$(2) then $${\mathcal{S}}$$ must also be a generalized hexagon, and consequently isomorphic to either HD(2) or the dual twisted triality hexagon T(2, 8). | ||
650 | 4 | |a generalized hexagon | |
650 | 4 | |a near hexagon | |
650 | 4 | |a valuation | |
700 | 1 | |a De Bruyn, Bart |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annals of combinatorics |d Springer International Publishing, 1997 |g 20(2016), 3 vom: 07. Mai, Seite 433-452 |w (DE-627)234146176 |w (DE-600)1394631-6 |w (DE-576)094078408 |x 0218-0006 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2016 |g number:3 |g day:07 |g month:05 |g pages:433-452 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00026-016-0315-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2088 | ||
951 | |a AR | ||
952 | |d 20 |j 2016 |e 3 |b 07 |c 05 |h 433-452 |
author_variant |
a b ab b b d bb bbd |
---|---|
matchkey_str |
article:02180006:2016----::neiiieeaosfre2cnan |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s00026-016-0315-z doi (DE-627)OLC2061535941 (DE-He213)s00026-016-0315-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bishnoi, Anurag verfasserin aut On Semi-Finite Hexagons of Order (2, t) Containing a Subhexagon 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing 2016 Abstract The research in this paper was motivated by one of the most important open problems in the theory of generalized polygons, namely the existence problem for semi–finite thick generalized polygons. We show here that no semi–finite generalized hexagon of order (2, t) can have a subhexagon H of order 2. Such a subhexagon is necessarily isomorphic to the split Cayley generalized hexagon H(2) or its point–line dual HD(2). In fact, the employed techniques allow us to prove a stronger result. We show that every near hexagon $${\mathcal{S}}$$ of order (2, t) which contains a generalized hexagon H of order 2 as an isometrically embedded subgeometry must be finite. Moreover, if $${H \cong H^{D}}$$(2) then $${\mathcal{S}}$$ must also be a generalized hexagon, and consequently isomorphic to either HD(2) or the dual twisted triality hexagon T(2, 8). generalized hexagon near hexagon valuation De Bruyn, Bart aut Enthalten in Annals of combinatorics Springer International Publishing, 1997 20(2016), 3 vom: 07. Mai, Seite 433-452 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:20 year:2016 number:3 day:07 month:05 pages:433-452 https://doi.org/10.1007/s00026-016-0315-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 AR 20 2016 3 07 05 433-452 |
spelling |
10.1007/s00026-016-0315-z doi (DE-627)OLC2061535941 (DE-He213)s00026-016-0315-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bishnoi, Anurag verfasserin aut On Semi-Finite Hexagons of Order (2, t) Containing a Subhexagon 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing 2016 Abstract The research in this paper was motivated by one of the most important open problems in the theory of generalized polygons, namely the existence problem for semi–finite thick generalized polygons. We show here that no semi–finite generalized hexagon of order (2, t) can have a subhexagon H of order 2. Such a subhexagon is necessarily isomorphic to the split Cayley generalized hexagon H(2) or its point–line dual HD(2). In fact, the employed techniques allow us to prove a stronger result. We show that every near hexagon $${\mathcal{S}}$$ of order (2, t) which contains a generalized hexagon H of order 2 as an isometrically embedded subgeometry must be finite. Moreover, if $${H \cong H^{D}}$$(2) then $${\mathcal{S}}$$ must also be a generalized hexagon, and consequently isomorphic to either HD(2) or the dual twisted triality hexagon T(2, 8). generalized hexagon near hexagon valuation De Bruyn, Bart aut Enthalten in Annals of combinatorics Springer International Publishing, 1997 20(2016), 3 vom: 07. Mai, Seite 433-452 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:20 year:2016 number:3 day:07 month:05 pages:433-452 https://doi.org/10.1007/s00026-016-0315-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 AR 20 2016 3 07 05 433-452 |
allfields_unstemmed |
10.1007/s00026-016-0315-z doi (DE-627)OLC2061535941 (DE-He213)s00026-016-0315-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bishnoi, Anurag verfasserin aut On Semi-Finite Hexagons of Order (2, t) Containing a Subhexagon 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing 2016 Abstract The research in this paper was motivated by one of the most important open problems in the theory of generalized polygons, namely the existence problem for semi–finite thick generalized polygons. We show here that no semi–finite generalized hexagon of order (2, t) can have a subhexagon H of order 2. Such a subhexagon is necessarily isomorphic to the split Cayley generalized hexagon H(2) or its point–line dual HD(2). In fact, the employed techniques allow us to prove a stronger result. We show that every near hexagon $${\mathcal{S}}$$ of order (2, t) which contains a generalized hexagon H of order 2 as an isometrically embedded subgeometry must be finite. Moreover, if $${H \cong H^{D}}$$(2) then $${\mathcal{S}}$$ must also be a generalized hexagon, and consequently isomorphic to either HD(2) or the dual twisted triality hexagon T(2, 8). generalized hexagon near hexagon valuation De Bruyn, Bart aut Enthalten in Annals of combinatorics Springer International Publishing, 1997 20(2016), 3 vom: 07. Mai, Seite 433-452 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:20 year:2016 number:3 day:07 month:05 pages:433-452 https://doi.org/10.1007/s00026-016-0315-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 AR 20 2016 3 07 05 433-452 |
allfieldsGer |
10.1007/s00026-016-0315-z doi (DE-627)OLC2061535941 (DE-He213)s00026-016-0315-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bishnoi, Anurag verfasserin aut On Semi-Finite Hexagons of Order (2, t) Containing a Subhexagon 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing 2016 Abstract The research in this paper was motivated by one of the most important open problems in the theory of generalized polygons, namely the existence problem for semi–finite thick generalized polygons. We show here that no semi–finite generalized hexagon of order (2, t) can have a subhexagon H of order 2. Such a subhexagon is necessarily isomorphic to the split Cayley generalized hexagon H(2) or its point–line dual HD(2). In fact, the employed techniques allow us to prove a stronger result. We show that every near hexagon $${\mathcal{S}}$$ of order (2, t) which contains a generalized hexagon H of order 2 as an isometrically embedded subgeometry must be finite. Moreover, if $${H \cong H^{D}}$$(2) then $${\mathcal{S}}$$ must also be a generalized hexagon, and consequently isomorphic to either HD(2) or the dual twisted triality hexagon T(2, 8). generalized hexagon near hexagon valuation De Bruyn, Bart aut Enthalten in Annals of combinatorics Springer International Publishing, 1997 20(2016), 3 vom: 07. Mai, Seite 433-452 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:20 year:2016 number:3 day:07 month:05 pages:433-452 https://doi.org/10.1007/s00026-016-0315-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 AR 20 2016 3 07 05 433-452 |
allfieldsSound |
10.1007/s00026-016-0315-z doi (DE-627)OLC2061535941 (DE-He213)s00026-016-0315-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bishnoi, Anurag verfasserin aut On Semi-Finite Hexagons of Order (2, t) Containing a Subhexagon 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing 2016 Abstract The research in this paper was motivated by one of the most important open problems in the theory of generalized polygons, namely the existence problem for semi–finite thick generalized polygons. We show here that no semi–finite generalized hexagon of order (2, t) can have a subhexagon H of order 2. Such a subhexagon is necessarily isomorphic to the split Cayley generalized hexagon H(2) or its point–line dual HD(2). In fact, the employed techniques allow us to prove a stronger result. We show that every near hexagon $${\mathcal{S}}$$ of order (2, t) which contains a generalized hexagon H of order 2 as an isometrically embedded subgeometry must be finite. Moreover, if $${H \cong H^{D}}$$(2) then $${\mathcal{S}}$$ must also be a generalized hexagon, and consequently isomorphic to either HD(2) or the dual twisted triality hexagon T(2, 8). generalized hexagon near hexagon valuation De Bruyn, Bart aut Enthalten in Annals of combinatorics Springer International Publishing, 1997 20(2016), 3 vom: 07. Mai, Seite 433-452 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:20 year:2016 number:3 day:07 month:05 pages:433-452 https://doi.org/10.1007/s00026-016-0315-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 AR 20 2016 3 07 05 433-452 |
language |
English |
source |
Enthalten in Annals of combinatorics 20(2016), 3 vom: 07. Mai, Seite 433-452 volume:20 year:2016 number:3 day:07 month:05 pages:433-452 |
sourceStr |
Enthalten in Annals of combinatorics 20(2016), 3 vom: 07. Mai, Seite 433-452 volume:20 year:2016 number:3 day:07 month:05 pages:433-452 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
generalized hexagon near hexagon valuation |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Annals of combinatorics |
authorswithroles_txt_mv |
Bishnoi, Anurag @@aut@@ De Bruyn, Bart @@aut@@ |
publishDateDaySort_date |
2016-05-07T00:00:00Z |
hierarchy_top_id |
234146176 |
dewey-sort |
3510 |
id |
OLC2061535941 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2061535941</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113644.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00026-016-0315-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2061535941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00026-016-0315-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bishnoi, Anurag</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Semi-Finite Hexagons of Order (2, t) Containing a Subhexagon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer International Publishing 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The research in this paper was motivated by one of the most important open problems in the theory of generalized polygons, namely the existence problem for semi–finite thick generalized polygons. We show here that no semi–finite generalized hexagon of order (2, t) can have a subhexagon H of order 2. Such a subhexagon is necessarily isomorphic to the split Cayley generalized hexagon H(2) or its point–line dual HD(2). In fact, the employed techniques allow us to prove a stronger result. We show that every near hexagon $${\mathcal{S}}$$ of order (2, t) which contains a generalized hexagon H of order 2 as an isometrically embedded subgeometry must be finite. Moreover, if $${H \cong H^{D}}$$(2) then $${\mathcal{S}}$$ must also be a generalized hexagon, and consequently isomorphic to either HD(2) or the dual twisted triality hexagon T(2, 8).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generalized hexagon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">near hexagon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">valuation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Bruyn, Bart</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of combinatorics</subfield><subfield code="d">Springer International Publishing, 1997</subfield><subfield code="g">20(2016), 3 vom: 07. Mai, Seite 433-452</subfield><subfield code="w">(DE-627)234146176</subfield><subfield code="w">(DE-600)1394631-6</subfield><subfield code="w">(DE-576)094078408</subfield><subfield code="x">0218-0006</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:07</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:433-452</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00026-016-0315-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">07</subfield><subfield code="c">05</subfield><subfield code="h">433-452</subfield></datafield></record></collection>
|
author |
Bishnoi, Anurag |
spellingShingle |
Bishnoi, Anurag ddc 510 ssgn 17,1 misc generalized hexagon misc near hexagon misc valuation On Semi-Finite Hexagons of Order (2, t) Containing a Subhexagon |
authorStr |
Bishnoi, Anurag |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)234146176 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0218-0006 |
topic_title |
510 VZ 17,1 ssgn On Semi-Finite Hexagons of Order (2, t) Containing a Subhexagon generalized hexagon near hexagon valuation |
topic |
ddc 510 ssgn 17,1 misc generalized hexagon misc near hexagon misc valuation |
topic_unstemmed |
ddc 510 ssgn 17,1 misc generalized hexagon misc near hexagon misc valuation |
topic_browse |
ddc 510 ssgn 17,1 misc generalized hexagon misc near hexagon misc valuation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Annals of combinatorics |
hierarchy_parent_id |
234146176 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Annals of combinatorics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 |
title |
On Semi-Finite Hexagons of Order (2, t) Containing a Subhexagon |
ctrlnum |
(DE-627)OLC2061535941 (DE-He213)s00026-016-0315-z-p |
title_full |
On Semi-Finite Hexagons of Order (2, t) Containing a Subhexagon |
author_sort |
Bishnoi, Anurag |
journal |
Annals of combinatorics |
journalStr |
Annals of combinatorics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
433 |
author_browse |
Bishnoi, Anurag De Bruyn, Bart |
container_volume |
20 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Bishnoi, Anurag |
doi_str_mv |
10.1007/s00026-016-0315-z |
dewey-full |
510 |
title_sort |
on semi-finite hexagons of order (2, t) containing a subhexagon |
title_auth |
On Semi-Finite Hexagons of Order (2, t) Containing a Subhexagon |
abstract |
Abstract The research in this paper was motivated by one of the most important open problems in the theory of generalized polygons, namely the existence problem for semi–finite thick generalized polygons. We show here that no semi–finite generalized hexagon of order (2, t) can have a subhexagon H of order 2. Such a subhexagon is necessarily isomorphic to the split Cayley generalized hexagon H(2) or its point–line dual HD(2). In fact, the employed techniques allow us to prove a stronger result. We show that every near hexagon $${\mathcal{S}}$$ of order (2, t) which contains a generalized hexagon H of order 2 as an isometrically embedded subgeometry must be finite. Moreover, if $${H \cong H^{D}}$$(2) then $${\mathcal{S}}$$ must also be a generalized hexagon, and consequently isomorphic to either HD(2) or the dual twisted triality hexagon T(2, 8). © Springer International Publishing 2016 |
abstractGer |
Abstract The research in this paper was motivated by one of the most important open problems in the theory of generalized polygons, namely the existence problem for semi–finite thick generalized polygons. We show here that no semi–finite generalized hexagon of order (2, t) can have a subhexagon H of order 2. Such a subhexagon is necessarily isomorphic to the split Cayley generalized hexagon H(2) or its point–line dual HD(2). In fact, the employed techniques allow us to prove a stronger result. We show that every near hexagon $${\mathcal{S}}$$ of order (2, t) which contains a generalized hexagon H of order 2 as an isometrically embedded subgeometry must be finite. Moreover, if $${H \cong H^{D}}$$(2) then $${\mathcal{S}}$$ must also be a generalized hexagon, and consequently isomorphic to either HD(2) or the dual twisted triality hexagon T(2, 8). © Springer International Publishing 2016 |
abstract_unstemmed |
Abstract The research in this paper was motivated by one of the most important open problems in the theory of generalized polygons, namely the existence problem for semi–finite thick generalized polygons. We show here that no semi–finite generalized hexagon of order (2, t) can have a subhexagon H of order 2. Such a subhexagon is necessarily isomorphic to the split Cayley generalized hexagon H(2) or its point–line dual HD(2). In fact, the employed techniques allow us to prove a stronger result. We show that every near hexagon $${\mathcal{S}}$$ of order (2, t) which contains a generalized hexagon H of order 2 as an isometrically embedded subgeometry must be finite. Moreover, if $${H \cong H^{D}}$$(2) then $${\mathcal{S}}$$ must also be a generalized hexagon, and consequently isomorphic to either HD(2) or the dual twisted triality hexagon T(2, 8). © Springer International Publishing 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2088 |
container_issue |
3 |
title_short |
On Semi-Finite Hexagons of Order (2, t) Containing a Subhexagon |
url |
https://doi.org/10.1007/s00026-016-0315-z |
remote_bool |
false |
author2 |
De Bruyn, Bart |
author2Str |
De Bruyn, Bart |
ppnlink |
234146176 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00026-016-0315-z |
up_date |
2024-07-04T03:49:23.901Z |
_version_ |
1803618839597940736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2061535941</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113644.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00026-016-0315-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2061535941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00026-016-0315-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bishnoi, Anurag</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Semi-Finite Hexagons of Order (2, t) Containing a Subhexagon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer International Publishing 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The research in this paper was motivated by one of the most important open problems in the theory of generalized polygons, namely the existence problem for semi–finite thick generalized polygons. We show here that no semi–finite generalized hexagon of order (2, t) can have a subhexagon H of order 2. Such a subhexagon is necessarily isomorphic to the split Cayley generalized hexagon H(2) or its point–line dual HD(2). In fact, the employed techniques allow us to prove a stronger result. We show that every near hexagon $${\mathcal{S}}$$ of order (2, t) which contains a generalized hexagon H of order 2 as an isometrically embedded subgeometry must be finite. Moreover, if $${H \cong H^{D}}$$(2) then $${\mathcal{S}}$$ must also be a generalized hexagon, and consequently isomorphic to either HD(2) or the dual twisted triality hexagon T(2, 8).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generalized hexagon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">near hexagon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">valuation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Bruyn, Bart</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of combinatorics</subfield><subfield code="d">Springer International Publishing, 1997</subfield><subfield code="g">20(2016), 3 vom: 07. Mai, Seite 433-452</subfield><subfield code="w">(DE-627)234146176</subfield><subfield code="w">(DE-600)1394631-6</subfield><subfield code="w">(DE-576)094078408</subfield><subfield code="x">0218-0006</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:07</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:433-452</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00026-016-0315-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">07</subfield><subfield code="c">05</subfield><subfield code="h">433-452</subfield></datafield></record></collection>
|
score |
7.4005556 |