Some Elementary Partition Inequalities and Their Implications
Abstract We prove various inequalities between the number of partitions with the bound on the largest part and some restrictions on occurrences of parts. We explore many interesting consequences of these partition inequalities. In particular, we show that for $$L\ge 1$$, the number of partitions wit...
Ausführliche Beschreibung
Autor*in: |
Berkovich, Alexander [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
Partitions with bounded differences between largest and smallest parts |
---|
Anmerkung: |
© The Author(s) 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of combinatorics - Springer International Publishing, 1997, 23(2019), 2 vom: 14. Mai, Seite 263-284 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2019 ; number:2 ; day:14 ; month:05 ; pages:263-284 |
Links: |
---|
DOI / URN: |
10.1007/s00026-019-00433-y |
---|
Katalog-ID: |
OLC2061537022 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2061537022 | ||
003 | DE-627 | ||
005 | 20230323113657.0 | ||
007 | tu | ||
008 | 200819s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00026-019-00433-y |2 doi | |
035 | |a (DE-627)OLC2061537022 | ||
035 | |a (DE-He213)s00026-019-00433-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Berkovich, Alexander |e verfasserin |4 aut | |
245 | 1 | 0 | |a Some Elementary Partition Inequalities and Their Implications |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2019 | ||
520 | |a Abstract We prove various inequalities between the number of partitions with the bound on the largest part and some restrictions on occurrences of parts. We explore many interesting consequences of these partition inequalities. In particular, we show that for $$L\ge 1$$, the number of partitions with $$l-s \le L$$ and $$s=1$$ is greater than the number of partitions with $$l-s\le L$$ and $$s>1$$. Here l and s are the largest part and the smallest part of the partition, respectively. | ||
650 | 4 | |a Partition inequalities | |
650 | 4 | |a Partitions with bounded differences between largest and smallest parts | |
650 | 4 | |a Non-negative | |
650 | 4 | |a -series expansions | |
650 | 4 | |a Injective maps | |
650 | 4 | |a -Binomial theorem | |
650 | 4 | |a Heine transformations | |
650 | 4 | |a Jackson transformation | |
700 | 1 | |a Uncu, Ali Kemal |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annals of combinatorics |d Springer International Publishing, 1997 |g 23(2019), 2 vom: 14. Mai, Seite 263-284 |w (DE-627)234146176 |w (DE-600)1394631-6 |w (DE-576)094078408 |x 0218-0006 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2019 |g number:2 |g day:14 |g month:05 |g pages:263-284 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00026-019-00433-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
951 | |a AR | ||
952 | |d 23 |j 2019 |e 2 |b 14 |c 05 |h 263-284 |
author_variant |
a b ab a k u ak aku |
---|---|
matchkey_str |
article:02180006:2019----::oelmnayattoieultead |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00026-019-00433-y doi (DE-627)OLC2061537022 (DE-He213)s00026-019-00433-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Berkovich, Alexander verfasserin aut Some Elementary Partition Inequalities and Their Implications 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract We prove various inequalities between the number of partitions with the bound on the largest part and some restrictions on occurrences of parts. We explore many interesting consequences of these partition inequalities. In particular, we show that for $$L\ge 1$$, the number of partitions with $$l-s \le L$$ and $$s=1$$ is greater than the number of partitions with $$l-s\le L$$ and $$s>1$$. Here l and s are the largest part and the smallest part of the partition, respectively. Partition inequalities Partitions with bounded differences between largest and smallest parts Non-negative -series expansions Injective maps -Binomial theorem Heine transformations Jackson transformation Uncu, Ali Kemal aut Enthalten in Annals of combinatorics Springer International Publishing, 1997 23(2019), 2 vom: 14. Mai, Seite 263-284 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:23 year:2019 number:2 day:14 month:05 pages:263-284 https://doi.org/10.1007/s00026-019-00433-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 AR 23 2019 2 14 05 263-284 |
spelling |
10.1007/s00026-019-00433-y doi (DE-627)OLC2061537022 (DE-He213)s00026-019-00433-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Berkovich, Alexander verfasserin aut Some Elementary Partition Inequalities and Their Implications 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract We prove various inequalities between the number of partitions with the bound on the largest part and some restrictions on occurrences of parts. We explore many interesting consequences of these partition inequalities. In particular, we show that for $$L\ge 1$$, the number of partitions with $$l-s \le L$$ and $$s=1$$ is greater than the number of partitions with $$l-s\le L$$ and $$s>1$$. Here l and s are the largest part and the smallest part of the partition, respectively. Partition inequalities Partitions with bounded differences between largest and smallest parts Non-negative -series expansions Injective maps -Binomial theorem Heine transformations Jackson transformation Uncu, Ali Kemal aut Enthalten in Annals of combinatorics Springer International Publishing, 1997 23(2019), 2 vom: 14. Mai, Seite 263-284 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:23 year:2019 number:2 day:14 month:05 pages:263-284 https://doi.org/10.1007/s00026-019-00433-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 AR 23 2019 2 14 05 263-284 |
allfields_unstemmed |
10.1007/s00026-019-00433-y doi (DE-627)OLC2061537022 (DE-He213)s00026-019-00433-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Berkovich, Alexander verfasserin aut Some Elementary Partition Inequalities and Their Implications 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract We prove various inequalities between the number of partitions with the bound on the largest part and some restrictions on occurrences of parts. We explore many interesting consequences of these partition inequalities. In particular, we show that for $$L\ge 1$$, the number of partitions with $$l-s \le L$$ and $$s=1$$ is greater than the number of partitions with $$l-s\le L$$ and $$s>1$$. Here l and s are the largest part and the smallest part of the partition, respectively. Partition inequalities Partitions with bounded differences between largest and smallest parts Non-negative -series expansions Injective maps -Binomial theorem Heine transformations Jackson transformation Uncu, Ali Kemal aut Enthalten in Annals of combinatorics Springer International Publishing, 1997 23(2019), 2 vom: 14. Mai, Seite 263-284 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:23 year:2019 number:2 day:14 month:05 pages:263-284 https://doi.org/10.1007/s00026-019-00433-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 AR 23 2019 2 14 05 263-284 |
allfieldsGer |
10.1007/s00026-019-00433-y doi (DE-627)OLC2061537022 (DE-He213)s00026-019-00433-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Berkovich, Alexander verfasserin aut Some Elementary Partition Inequalities and Their Implications 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract We prove various inequalities between the number of partitions with the bound on the largest part and some restrictions on occurrences of parts. We explore many interesting consequences of these partition inequalities. In particular, we show that for $$L\ge 1$$, the number of partitions with $$l-s \le L$$ and $$s=1$$ is greater than the number of partitions with $$l-s\le L$$ and $$s>1$$. Here l and s are the largest part and the smallest part of the partition, respectively. Partition inequalities Partitions with bounded differences between largest and smallest parts Non-negative -series expansions Injective maps -Binomial theorem Heine transformations Jackson transformation Uncu, Ali Kemal aut Enthalten in Annals of combinatorics Springer International Publishing, 1997 23(2019), 2 vom: 14. Mai, Seite 263-284 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:23 year:2019 number:2 day:14 month:05 pages:263-284 https://doi.org/10.1007/s00026-019-00433-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 AR 23 2019 2 14 05 263-284 |
allfieldsSound |
10.1007/s00026-019-00433-y doi (DE-627)OLC2061537022 (DE-He213)s00026-019-00433-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Berkovich, Alexander verfasserin aut Some Elementary Partition Inequalities and Their Implications 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract We prove various inequalities between the number of partitions with the bound on the largest part and some restrictions on occurrences of parts. We explore many interesting consequences of these partition inequalities. In particular, we show that for $$L\ge 1$$, the number of partitions with $$l-s \le L$$ and $$s=1$$ is greater than the number of partitions with $$l-s\le L$$ and $$s>1$$. Here l and s are the largest part and the smallest part of the partition, respectively. Partition inequalities Partitions with bounded differences between largest and smallest parts Non-negative -series expansions Injective maps -Binomial theorem Heine transformations Jackson transformation Uncu, Ali Kemal aut Enthalten in Annals of combinatorics Springer International Publishing, 1997 23(2019), 2 vom: 14. Mai, Seite 263-284 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:23 year:2019 number:2 day:14 month:05 pages:263-284 https://doi.org/10.1007/s00026-019-00433-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 AR 23 2019 2 14 05 263-284 |
language |
English |
source |
Enthalten in Annals of combinatorics 23(2019), 2 vom: 14. Mai, Seite 263-284 volume:23 year:2019 number:2 day:14 month:05 pages:263-284 |
sourceStr |
Enthalten in Annals of combinatorics 23(2019), 2 vom: 14. Mai, Seite 263-284 volume:23 year:2019 number:2 day:14 month:05 pages:263-284 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Partition inequalities Partitions with bounded differences between largest and smallest parts Non-negative -series expansions Injective maps -Binomial theorem Heine transformations Jackson transformation |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Annals of combinatorics |
authorswithroles_txt_mv |
Berkovich, Alexander @@aut@@ Uncu, Ali Kemal @@aut@@ |
publishDateDaySort_date |
2019-05-14T00:00:00Z |
hierarchy_top_id |
234146176 |
dewey-sort |
3510 |
id |
OLC2061537022 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2061537022</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113657.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00026-019-00433-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2061537022</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00026-019-00433-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berkovich, Alexander</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some Elementary Partition Inequalities and Their Implications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove various inequalities between the number of partitions with the bound on the largest part and some restrictions on occurrences of parts. We explore many interesting consequences of these partition inequalities. In particular, we show that for $$L\ge 1$$, the number of partitions with $$l-s \le L$$ and $$s=1$$ is greater than the number of partitions with $$l-s\le L$$ and $$s>1$$. Here l and s are the largest part and the smallest part of the partition, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partition inequalities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partitions with bounded differences between largest and smallest parts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-negative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-series expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Injective maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Binomial theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heine transformations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jackson transformation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uncu, Ali Kemal</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of combinatorics</subfield><subfield code="d">Springer International Publishing, 1997</subfield><subfield code="g">23(2019), 2 vom: 14. Mai, Seite 263-284</subfield><subfield code="w">(DE-627)234146176</subfield><subfield code="w">(DE-600)1394631-6</subfield><subfield code="w">(DE-576)094078408</subfield><subfield code="x">0218-0006</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">day:14</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:263-284</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00026-019-00433-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="b">14</subfield><subfield code="c">05</subfield><subfield code="h">263-284</subfield></datafield></record></collection>
|
author |
Berkovich, Alexander |
spellingShingle |
Berkovich, Alexander ddc 510 ssgn 17,1 misc Partition inequalities misc Partitions with bounded differences between largest and smallest parts misc Non-negative misc -series expansions misc Injective maps misc -Binomial theorem misc Heine transformations misc Jackson transformation Some Elementary Partition Inequalities and Their Implications |
authorStr |
Berkovich, Alexander |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)234146176 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0218-0006 |
topic_title |
510 VZ 17,1 ssgn Some Elementary Partition Inequalities and Their Implications Partition inequalities Partitions with bounded differences between largest and smallest parts Non-negative -series expansions Injective maps -Binomial theorem Heine transformations Jackson transformation |
topic |
ddc 510 ssgn 17,1 misc Partition inequalities misc Partitions with bounded differences between largest and smallest parts misc Non-negative misc -series expansions misc Injective maps misc -Binomial theorem misc Heine transformations misc Jackson transformation |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Partition inequalities misc Partitions with bounded differences between largest and smallest parts misc Non-negative misc -series expansions misc Injective maps misc -Binomial theorem misc Heine transformations misc Jackson transformation |
topic_browse |
ddc 510 ssgn 17,1 misc Partition inequalities misc Partitions with bounded differences between largest and smallest parts misc Non-negative misc -series expansions misc Injective maps misc -Binomial theorem misc Heine transformations misc Jackson transformation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Annals of combinatorics |
hierarchy_parent_id |
234146176 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Annals of combinatorics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 |
title |
Some Elementary Partition Inequalities and Their Implications |
ctrlnum |
(DE-627)OLC2061537022 (DE-He213)s00026-019-00433-y-p |
title_full |
Some Elementary Partition Inequalities and Their Implications |
author_sort |
Berkovich, Alexander |
journal |
Annals of combinatorics |
journalStr |
Annals of combinatorics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
263 |
author_browse |
Berkovich, Alexander Uncu, Ali Kemal |
container_volume |
23 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Berkovich, Alexander |
doi_str_mv |
10.1007/s00026-019-00433-y |
dewey-full |
510 |
title_sort |
some elementary partition inequalities and their implications |
title_auth |
Some Elementary Partition Inequalities and Their Implications |
abstract |
Abstract We prove various inequalities between the number of partitions with the bound on the largest part and some restrictions on occurrences of parts. We explore many interesting consequences of these partition inequalities. In particular, we show that for $$L\ge 1$$, the number of partitions with $$l-s \le L$$ and $$s=1$$ is greater than the number of partitions with $$l-s\le L$$ and $$s>1$$. Here l and s are the largest part and the smallest part of the partition, respectively. © The Author(s) 2019 |
abstractGer |
Abstract We prove various inequalities between the number of partitions with the bound on the largest part and some restrictions on occurrences of parts. We explore many interesting consequences of these partition inequalities. In particular, we show that for $$L\ge 1$$, the number of partitions with $$l-s \le L$$ and $$s=1$$ is greater than the number of partitions with $$l-s\le L$$ and $$s>1$$. Here l and s are the largest part and the smallest part of the partition, respectively. © The Author(s) 2019 |
abstract_unstemmed |
Abstract We prove various inequalities between the number of partitions with the bound on the largest part and some restrictions on occurrences of parts. We explore many interesting consequences of these partition inequalities. In particular, we show that for $$L\ge 1$$, the number of partitions with $$l-s \le L$$ and $$s=1$$ is greater than the number of partitions with $$l-s\le L$$ and $$s>1$$. Here l and s are the largest part and the smallest part of the partition, respectively. © The Author(s) 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 |
container_issue |
2 |
title_short |
Some Elementary Partition Inequalities and Their Implications |
url |
https://doi.org/10.1007/s00026-019-00433-y |
remote_bool |
false |
author2 |
Uncu, Ali Kemal |
author2Str |
Uncu, Ali Kemal |
ppnlink |
234146176 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00026-019-00433-y |
up_date |
2024-07-04T03:49:31.075Z |
_version_ |
1803618847127764992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2061537022</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113657.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00026-019-00433-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2061537022</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00026-019-00433-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berkovich, Alexander</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some Elementary Partition Inequalities and Their Implications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove various inequalities between the number of partitions with the bound on the largest part and some restrictions on occurrences of parts. We explore many interesting consequences of these partition inequalities. In particular, we show that for $$L\ge 1$$, the number of partitions with $$l-s \le L$$ and $$s=1$$ is greater than the number of partitions with $$l-s\le L$$ and $$s>1$$. Here l and s are the largest part and the smallest part of the partition, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partition inequalities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partitions with bounded differences between largest and smallest parts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-negative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-series expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Injective maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Binomial theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heine transformations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jackson transformation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uncu, Ali Kemal</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of combinatorics</subfield><subfield code="d">Springer International Publishing, 1997</subfield><subfield code="g">23(2019), 2 vom: 14. Mai, Seite 263-284</subfield><subfield code="w">(DE-627)234146176</subfield><subfield code="w">(DE-600)1394631-6</subfield><subfield code="w">(DE-576)094078408</subfield><subfield code="x">0218-0006</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">day:14</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:263-284</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00026-019-00433-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="b">14</subfield><subfield code="c">05</subfield><subfield code="h">263-284</subfield></datafield></record></collection>
|
score |
7.4022093 |