A Refined Energy Bound for Distinct Perpendicular Bisectors
Abstract Let $${\mathcal {P}}$$ be a set of n points in the Euclidean plane. We prove that, for any $$\varepsilon > 0$$, either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors determined by pairs of points in $${\mathcal {P}}$$...
Ausführliche Beschreibung
Autor*in: |
Lund, Ben [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Nature Switzerland AG 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of combinatorics - Springer International Publishing, 1997, 24(2020), 2 vom: 14. Jan., Seite 225-235 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2020 ; number:2 ; day:14 ; month:01 ; pages:225-235 |
Links: |
---|
DOI / URN: |
10.1007/s00026-019-00478-z |
---|
Katalog-ID: |
OLC2061537642 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2061537642 | ||
003 | DE-627 | ||
005 | 20230504152720.0 | ||
007 | tu | ||
008 | 200819s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00026-019-00478-z |2 doi | |
035 | |a (DE-627)OLC2061537642 | ||
035 | |a (DE-He213)s00026-019-00478-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Lund, Ben |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Refined Energy Bound for Distinct Perpendicular Bisectors |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Nature Switzerland AG 2020 | ||
520 | |a Abstract Let $${\mathcal {P}}$$ be a set of n points in the Euclidean plane. We prove that, for any $$\varepsilon > 0$$, either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors determined by pairs of points in $${\mathcal {P}}$$ is $$\Omega (n^{52/35 - \varepsilon })$$, where the constant implied by the $$\Omega $$ notation depends on $$\varepsilon $$. This is progress toward a conjecture of Lund, Sheffer, and de Zeeuw, that either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors is $$\Omega (n^2)$$. The proof relies bounding the size of a carefully selected subset of the quadruples $$(a,b,c,d) \in {\mathcal {P}}^4$$ such that the perpendicular bisector of a and b is the same as the perpendicular bisector of c and d. | ||
650 | 4 | |a Incidences | |
650 | 4 | |a Perpendicular bisectors | |
650 | 4 | |a Distinct distances | |
650 | 4 | |a Energy bound | |
773 | 0 | 8 | |i Enthalten in |t Annals of combinatorics |d Springer International Publishing, 1997 |g 24(2020), 2 vom: 14. Jan., Seite 225-235 |w (DE-627)234146176 |w (DE-600)1394631-6 |w (DE-576)094078408 |x 0218-0006 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2020 |g number:2 |g day:14 |g month:01 |g pages:225-235 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00026-019-00478-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_267 | ||
951 | |a AR | ||
952 | |d 24 |j 2020 |e 2 |b 14 |c 01 |h 225-235 |
author_variant |
b l bl |
---|---|
matchkey_str |
article:02180006:2020----::rfndnryonfritntepni |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s00026-019-00478-z doi (DE-627)OLC2061537642 (DE-He213)s00026-019-00478-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Lund, Ben verfasserin aut A Refined Energy Bound for Distinct Perpendicular Bisectors 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature Switzerland AG 2020 Abstract Let $${\mathcal {P}}$$ be a set of n points in the Euclidean plane. We prove that, for any $$\varepsilon > 0$$, either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors determined by pairs of points in $${\mathcal {P}}$$ is $$\Omega (n^{52/35 - \varepsilon })$$, where the constant implied by the $$\Omega $$ notation depends on $$\varepsilon $$. This is progress toward a conjecture of Lund, Sheffer, and de Zeeuw, that either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors is $$\Omega (n^2)$$. The proof relies bounding the size of a carefully selected subset of the quadruples $$(a,b,c,d) \in {\mathcal {P}}^4$$ such that the perpendicular bisector of a and b is the same as the perpendicular bisector of c and d. Incidences Perpendicular bisectors Distinct distances Energy bound Enthalten in Annals of combinatorics Springer International Publishing, 1997 24(2020), 2 vom: 14. Jan., Seite 225-235 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:24 year:2020 number:2 day:14 month:01 pages:225-235 https://doi.org/10.1007/s00026-019-00478-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_267 AR 24 2020 2 14 01 225-235 |
spelling |
10.1007/s00026-019-00478-z doi (DE-627)OLC2061537642 (DE-He213)s00026-019-00478-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Lund, Ben verfasserin aut A Refined Energy Bound for Distinct Perpendicular Bisectors 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature Switzerland AG 2020 Abstract Let $${\mathcal {P}}$$ be a set of n points in the Euclidean plane. We prove that, for any $$\varepsilon > 0$$, either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors determined by pairs of points in $${\mathcal {P}}$$ is $$\Omega (n^{52/35 - \varepsilon })$$, where the constant implied by the $$\Omega $$ notation depends on $$\varepsilon $$. This is progress toward a conjecture of Lund, Sheffer, and de Zeeuw, that either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors is $$\Omega (n^2)$$. The proof relies bounding the size of a carefully selected subset of the quadruples $$(a,b,c,d) \in {\mathcal {P}}^4$$ such that the perpendicular bisector of a and b is the same as the perpendicular bisector of c and d. Incidences Perpendicular bisectors Distinct distances Energy bound Enthalten in Annals of combinatorics Springer International Publishing, 1997 24(2020), 2 vom: 14. Jan., Seite 225-235 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:24 year:2020 number:2 day:14 month:01 pages:225-235 https://doi.org/10.1007/s00026-019-00478-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_267 AR 24 2020 2 14 01 225-235 |
allfields_unstemmed |
10.1007/s00026-019-00478-z doi (DE-627)OLC2061537642 (DE-He213)s00026-019-00478-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Lund, Ben verfasserin aut A Refined Energy Bound for Distinct Perpendicular Bisectors 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature Switzerland AG 2020 Abstract Let $${\mathcal {P}}$$ be a set of n points in the Euclidean plane. We prove that, for any $$\varepsilon > 0$$, either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors determined by pairs of points in $${\mathcal {P}}$$ is $$\Omega (n^{52/35 - \varepsilon })$$, where the constant implied by the $$\Omega $$ notation depends on $$\varepsilon $$. This is progress toward a conjecture of Lund, Sheffer, and de Zeeuw, that either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors is $$\Omega (n^2)$$. The proof relies bounding the size of a carefully selected subset of the quadruples $$(a,b,c,d) \in {\mathcal {P}}^4$$ such that the perpendicular bisector of a and b is the same as the perpendicular bisector of c and d. Incidences Perpendicular bisectors Distinct distances Energy bound Enthalten in Annals of combinatorics Springer International Publishing, 1997 24(2020), 2 vom: 14. Jan., Seite 225-235 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:24 year:2020 number:2 day:14 month:01 pages:225-235 https://doi.org/10.1007/s00026-019-00478-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_267 AR 24 2020 2 14 01 225-235 |
allfieldsGer |
10.1007/s00026-019-00478-z doi (DE-627)OLC2061537642 (DE-He213)s00026-019-00478-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Lund, Ben verfasserin aut A Refined Energy Bound for Distinct Perpendicular Bisectors 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature Switzerland AG 2020 Abstract Let $${\mathcal {P}}$$ be a set of n points in the Euclidean plane. We prove that, for any $$\varepsilon > 0$$, either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors determined by pairs of points in $${\mathcal {P}}$$ is $$\Omega (n^{52/35 - \varepsilon })$$, where the constant implied by the $$\Omega $$ notation depends on $$\varepsilon $$. This is progress toward a conjecture of Lund, Sheffer, and de Zeeuw, that either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors is $$\Omega (n^2)$$. The proof relies bounding the size of a carefully selected subset of the quadruples $$(a,b,c,d) \in {\mathcal {P}}^4$$ such that the perpendicular bisector of a and b is the same as the perpendicular bisector of c and d. Incidences Perpendicular bisectors Distinct distances Energy bound Enthalten in Annals of combinatorics Springer International Publishing, 1997 24(2020), 2 vom: 14. Jan., Seite 225-235 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:24 year:2020 number:2 day:14 month:01 pages:225-235 https://doi.org/10.1007/s00026-019-00478-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_267 AR 24 2020 2 14 01 225-235 |
allfieldsSound |
10.1007/s00026-019-00478-z doi (DE-627)OLC2061537642 (DE-He213)s00026-019-00478-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Lund, Ben verfasserin aut A Refined Energy Bound for Distinct Perpendicular Bisectors 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature Switzerland AG 2020 Abstract Let $${\mathcal {P}}$$ be a set of n points in the Euclidean plane. We prove that, for any $$\varepsilon > 0$$, either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors determined by pairs of points in $${\mathcal {P}}$$ is $$\Omega (n^{52/35 - \varepsilon })$$, where the constant implied by the $$\Omega $$ notation depends on $$\varepsilon $$. This is progress toward a conjecture of Lund, Sheffer, and de Zeeuw, that either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors is $$\Omega (n^2)$$. The proof relies bounding the size of a carefully selected subset of the quadruples $$(a,b,c,d) \in {\mathcal {P}}^4$$ such that the perpendicular bisector of a and b is the same as the perpendicular bisector of c and d. Incidences Perpendicular bisectors Distinct distances Energy bound Enthalten in Annals of combinatorics Springer International Publishing, 1997 24(2020), 2 vom: 14. Jan., Seite 225-235 (DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 0218-0006 nnns volume:24 year:2020 number:2 day:14 month:01 pages:225-235 https://doi.org/10.1007/s00026-019-00478-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_267 AR 24 2020 2 14 01 225-235 |
language |
English |
source |
Enthalten in Annals of combinatorics 24(2020), 2 vom: 14. Jan., Seite 225-235 volume:24 year:2020 number:2 day:14 month:01 pages:225-235 |
sourceStr |
Enthalten in Annals of combinatorics 24(2020), 2 vom: 14. Jan., Seite 225-235 volume:24 year:2020 number:2 day:14 month:01 pages:225-235 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Incidences Perpendicular bisectors Distinct distances Energy bound |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Annals of combinatorics |
authorswithroles_txt_mv |
Lund, Ben @@aut@@ |
publishDateDaySort_date |
2020-01-14T00:00:00Z |
hierarchy_top_id |
234146176 |
dewey-sort |
3510 |
id |
OLC2061537642 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2061537642</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504152720.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00026-019-00478-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2061537642</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00026-019-00478-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lund, Ben</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Refined Energy Bound for Distinct Perpendicular Bisectors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature Switzerland AG 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let $${\mathcal {P}}$$ be a set of n points in the Euclidean plane. We prove that, for any $$\varepsilon > 0$$, either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors determined by pairs of points in $${\mathcal {P}}$$ is $$\Omega (n^{52/35 - \varepsilon })$$, where the constant implied by the $$\Omega $$ notation depends on $$\varepsilon $$. This is progress toward a conjecture of Lund, Sheffer, and de Zeeuw, that either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors is $$\Omega (n^2)$$. The proof relies bounding the size of a carefully selected subset of the quadruples $$(a,b,c,d) \in {\mathcal {P}}^4$$ such that the perpendicular bisector of a and b is the same as the perpendicular bisector of c and d.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incidences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perpendicular bisectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distinct distances</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy bound</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of combinatorics</subfield><subfield code="d">Springer International Publishing, 1997</subfield><subfield code="g">24(2020), 2 vom: 14. Jan., Seite 225-235</subfield><subfield code="w">(DE-627)234146176</subfield><subfield code="w">(DE-600)1394631-6</subfield><subfield code="w">(DE-576)094078408</subfield><subfield code="x">0218-0006</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">day:14</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:225-235</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00026-019-00478-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="b">14</subfield><subfield code="c">01</subfield><subfield code="h">225-235</subfield></datafield></record></collection>
|
author |
Lund, Ben |
spellingShingle |
Lund, Ben ddc 510 ssgn 17,1 misc Incidences misc Perpendicular bisectors misc Distinct distances misc Energy bound A Refined Energy Bound for Distinct Perpendicular Bisectors |
authorStr |
Lund, Ben |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)234146176 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0218-0006 |
topic_title |
510 VZ 17,1 ssgn A Refined Energy Bound for Distinct Perpendicular Bisectors Incidences Perpendicular bisectors Distinct distances Energy bound |
topic |
ddc 510 ssgn 17,1 misc Incidences misc Perpendicular bisectors misc Distinct distances misc Energy bound |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Incidences misc Perpendicular bisectors misc Distinct distances misc Energy bound |
topic_browse |
ddc 510 ssgn 17,1 misc Incidences misc Perpendicular bisectors misc Distinct distances misc Energy bound |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Annals of combinatorics |
hierarchy_parent_id |
234146176 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Annals of combinatorics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)234146176 (DE-600)1394631-6 (DE-576)094078408 |
title |
A Refined Energy Bound for Distinct Perpendicular Bisectors |
ctrlnum |
(DE-627)OLC2061537642 (DE-He213)s00026-019-00478-z-p |
title_full |
A Refined Energy Bound for Distinct Perpendicular Bisectors |
author_sort |
Lund, Ben |
journal |
Annals of combinatorics |
journalStr |
Annals of combinatorics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
225 |
author_browse |
Lund, Ben |
container_volume |
24 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Lund, Ben |
doi_str_mv |
10.1007/s00026-019-00478-z |
dewey-full |
510 |
title_sort |
a refined energy bound for distinct perpendicular bisectors |
title_auth |
A Refined Energy Bound for Distinct Perpendicular Bisectors |
abstract |
Abstract Let $${\mathcal {P}}$$ be a set of n points in the Euclidean plane. We prove that, for any $$\varepsilon > 0$$, either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors determined by pairs of points in $${\mathcal {P}}$$ is $$\Omega (n^{52/35 - \varepsilon })$$, where the constant implied by the $$\Omega $$ notation depends on $$\varepsilon $$. This is progress toward a conjecture of Lund, Sheffer, and de Zeeuw, that either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors is $$\Omega (n^2)$$. The proof relies bounding the size of a carefully selected subset of the quadruples $$(a,b,c,d) \in {\mathcal {P}}^4$$ such that the perpendicular bisector of a and b is the same as the perpendicular bisector of c and d. © Springer Nature Switzerland AG 2020 |
abstractGer |
Abstract Let $${\mathcal {P}}$$ be a set of n points in the Euclidean plane. We prove that, for any $$\varepsilon > 0$$, either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors determined by pairs of points in $${\mathcal {P}}$$ is $$\Omega (n^{52/35 - \varepsilon })$$, where the constant implied by the $$\Omega $$ notation depends on $$\varepsilon $$. This is progress toward a conjecture of Lund, Sheffer, and de Zeeuw, that either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors is $$\Omega (n^2)$$. The proof relies bounding the size of a carefully selected subset of the quadruples $$(a,b,c,d) \in {\mathcal {P}}^4$$ such that the perpendicular bisector of a and b is the same as the perpendicular bisector of c and d. © Springer Nature Switzerland AG 2020 |
abstract_unstemmed |
Abstract Let $${\mathcal {P}}$$ be a set of n points in the Euclidean plane. We prove that, for any $$\varepsilon > 0$$, either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors determined by pairs of points in $${\mathcal {P}}$$ is $$\Omega (n^{52/35 - \varepsilon })$$, where the constant implied by the $$\Omega $$ notation depends on $$\varepsilon $$. This is progress toward a conjecture of Lund, Sheffer, and de Zeeuw, that either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors is $$\Omega (n^2)$$. The proof relies bounding the size of a carefully selected subset of the quadruples $$(a,b,c,d) \in {\mathcal {P}}^4$$ such that the perpendicular bisector of a and b is the same as the perpendicular bisector of c and d. © Springer Nature Switzerland AG 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_267 |
container_issue |
2 |
title_short |
A Refined Energy Bound for Distinct Perpendicular Bisectors |
url |
https://doi.org/10.1007/s00026-019-00478-z |
remote_bool |
false |
ppnlink |
234146176 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00026-019-00478-z |
up_date |
2024-07-04T03:49:35.048Z |
_version_ |
1803618851276980224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2061537642</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504152720.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00026-019-00478-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2061537642</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00026-019-00478-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lund, Ben</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Refined Energy Bound for Distinct Perpendicular Bisectors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature Switzerland AG 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let $${\mathcal {P}}$$ be a set of n points in the Euclidean plane. We prove that, for any $$\varepsilon > 0$$, either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors determined by pairs of points in $${\mathcal {P}}$$ is $$\Omega (n^{52/35 - \varepsilon })$$, where the constant implied by the $$\Omega $$ notation depends on $$\varepsilon $$. This is progress toward a conjecture of Lund, Sheffer, and de Zeeuw, that either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors is $$\Omega (n^2)$$. The proof relies bounding the size of a carefully selected subset of the quadruples $$(a,b,c,d) \in {\mathcal {P}}^4$$ such that the perpendicular bisector of a and b is the same as the perpendicular bisector of c and d.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incidences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perpendicular bisectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distinct distances</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy bound</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of combinatorics</subfield><subfield code="d">Springer International Publishing, 1997</subfield><subfield code="g">24(2020), 2 vom: 14. Jan., Seite 225-235</subfield><subfield code="w">(DE-627)234146176</subfield><subfield code="w">(DE-600)1394631-6</subfield><subfield code="w">(DE-576)094078408</subfield><subfield code="x">0218-0006</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">day:14</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:225-235</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00026-019-00478-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="b">14</subfield><subfield code="c">01</subfield><subfield code="h">225-235</subfield></datafield></record></collection>
|
score |
7.4010057 |