A Refined Energy Bound for Distinct Perpendicular Bisectors

Abstract Let $${\mathcal {P}}$$ be a set of n points in the Euclidean plane. We prove that, for any $$\varepsilon > 0$$, either a single line or circle contains n/2 points of $${\mathcal {P}}$$, or the number of distinct perpendicular bisectors determined by pairs of points in $${\mathcal {P}}$$...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Lund, Ben [verfasserIn]

Format:

Artikel

Sprache:

Englisch

Erschienen:

2020

Schlagwörter:

Incidences

Perpendicular bisectors

Distinct distances

Energy bound

Anmerkung:

© Springer Nature Switzerland AG 2020

Übergeordnetes Werk:

Enthalten in: Annals of combinatorics - Springer International Publishing, 1997, 24(2020), 2 vom: 14. Jan., Seite 225-235

Übergeordnetes Werk:

volume:24 ; year:2020 ; number:2 ; day:14 ; month:01 ; pages:225-235

Links:

Volltext

DOI / URN:

10.1007/s00026-019-00478-z

Katalog-ID:

OLC2061537642

Nicht das Richtige dabei?

Schreiben Sie uns!