Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense
Abstract A new water–sediment separation structure with a herringbone separation grid has been developed for debris flow defense. Previous model experiments showed that, compared to existing structures, this structure can continuously maintain its water–sediment separation function. However, in the...
Ausführliche Beschreibung
Autor*in: |
Xie, Tao [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
Water–sediment separation structure |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Bulletin of engineering geology and the environment - Springer Berlin Heidelberg, 1998, 75(2015), 1 vom: 26. Feb., Seite 101-108 |
---|---|
Übergeordnetes Werk: |
volume:75 ; year:2015 ; number:1 ; day:26 ; month:02 ; pages:101-108 |
Links: |
---|
DOI / URN: |
10.1007/s10064-015-0726-9 |
---|
Katalog-ID: |
OLC206168808X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC206168808X | ||
003 | DE-627 | ||
005 | 20230502165406.0 | ||
007 | tu | ||
008 | 200819s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10064-015-0726-9 |2 doi | |
035 | |a (DE-627)OLC206168808X | ||
035 | |a (DE-He213)s10064-015-0726-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |a 600 |q VZ |
100 | 1 | |a Xie, Tao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2015 | ||
520 | |a Abstract A new water–sediment separation structure with a herringbone separation grid has been developed for debris flow defense. Previous model experiments showed that, compared to existing structures, this structure can continuously maintain its water–sediment separation function. However, in the structure design, the length of the separation grid is key to its success in separating water and sediment. This paper presents a theoretical formula for calculating the design length of the grid. The theoretical formula shows that the grid length relates to the debris flow velocity vx, the grid width B, and the grid incline angle θ. A series of model experiments were conducted in the laboratory to test the accuracy of the formula. The results show that the experimental value and the theoretical value for grid length form a linear relationship and the design length of the grid may be corrected by a coefficient. Further analysis indicates that the correction coefficient changes with the bulk density of debris flow. Finally, a formula for determining the grid design length is derived from the theoretical formula, corrected using a coefficient related to the bulk density of a debris flow. | ||
650 | 4 | |a Debris flow | |
650 | 4 | |a Water–sediment separation structure | |
650 | 4 | |a Herringbone water–sediment separation grid | |
650 | 4 | |a Structure dimension | |
650 | 4 | |a Debris flow defense | |
700 | 1 | |a Wei, Fangqiang |4 aut | |
700 | 1 | |a Yang, Hongjuan |4 aut | |
700 | 1 | |a Gardner, James S. |4 aut | |
700 | 1 | |a Xie, Xiangping |4 aut | |
700 | 1 | |a Dai, Zhiqiang |4 aut | |
700 | 1 | |a Jiang, Zhen |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Bulletin of engineering geology and the environment |d Springer Berlin Heidelberg, 1998 |g 75(2015), 1 vom: 26. Feb., Seite 101-108 |w (DE-627)24891880X |w (DE-600)1444574-8 |w (DE-576)068745818 |x 1435-9529 |7 nnns |
773 | 1 | 8 | |g volume:75 |g year:2015 |g number:1 |g day:26 |g month:02 |g pages:101-108 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10064-015-0726-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 75 |j 2015 |e 1 |b 26 |c 02 |h 101-108 |
author_variant |
t x tx f w fw h y hy j s g js jsg x x xx z d zd z j zj |
---|---|
matchkey_str |
article:14359529:2015----::acltooteeaainrdeineghnnwaesdmnsprtosr |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s10064-015-0726-9 doi (DE-627)OLC206168808X (DE-He213)s10064-015-0726-9-p DE-627 ger DE-627 rakwb eng 550 600 VZ Xie, Tao verfasserin aut Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract A new water–sediment separation structure with a herringbone separation grid has been developed for debris flow defense. Previous model experiments showed that, compared to existing structures, this structure can continuously maintain its water–sediment separation function. However, in the structure design, the length of the separation grid is key to its success in separating water and sediment. This paper presents a theoretical formula for calculating the design length of the grid. The theoretical formula shows that the grid length relates to the debris flow velocity vx, the grid width B, and the grid incline angle θ. A series of model experiments were conducted in the laboratory to test the accuracy of the formula. The results show that the experimental value and the theoretical value for grid length form a linear relationship and the design length of the grid may be corrected by a coefficient. Further analysis indicates that the correction coefficient changes with the bulk density of debris flow. Finally, a formula for determining the grid design length is derived from the theoretical formula, corrected using a coefficient related to the bulk density of a debris flow. Debris flow Water–sediment separation structure Herringbone water–sediment separation grid Structure dimension Debris flow defense Wei, Fangqiang aut Yang, Hongjuan aut Gardner, James S. aut Xie, Xiangping aut Dai, Zhiqiang aut Jiang, Zhen aut Enthalten in Bulletin of engineering geology and the environment Springer Berlin Heidelberg, 1998 75(2015), 1 vom: 26. Feb., Seite 101-108 (DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 1435-9529 nnns volume:75 year:2015 number:1 day:26 month:02 pages:101-108 https://doi.org/10.1007/s10064-015-0726-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 75 2015 1 26 02 101-108 |
spelling |
10.1007/s10064-015-0726-9 doi (DE-627)OLC206168808X (DE-He213)s10064-015-0726-9-p DE-627 ger DE-627 rakwb eng 550 600 VZ Xie, Tao verfasserin aut Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract A new water–sediment separation structure with a herringbone separation grid has been developed for debris flow defense. Previous model experiments showed that, compared to existing structures, this structure can continuously maintain its water–sediment separation function. However, in the structure design, the length of the separation grid is key to its success in separating water and sediment. This paper presents a theoretical formula for calculating the design length of the grid. The theoretical formula shows that the grid length relates to the debris flow velocity vx, the grid width B, and the grid incline angle θ. A series of model experiments were conducted in the laboratory to test the accuracy of the formula. The results show that the experimental value and the theoretical value for grid length form a linear relationship and the design length of the grid may be corrected by a coefficient. Further analysis indicates that the correction coefficient changes with the bulk density of debris flow. Finally, a formula for determining the grid design length is derived from the theoretical formula, corrected using a coefficient related to the bulk density of a debris flow. Debris flow Water–sediment separation structure Herringbone water–sediment separation grid Structure dimension Debris flow defense Wei, Fangqiang aut Yang, Hongjuan aut Gardner, James S. aut Xie, Xiangping aut Dai, Zhiqiang aut Jiang, Zhen aut Enthalten in Bulletin of engineering geology and the environment Springer Berlin Heidelberg, 1998 75(2015), 1 vom: 26. Feb., Seite 101-108 (DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 1435-9529 nnns volume:75 year:2015 number:1 day:26 month:02 pages:101-108 https://doi.org/10.1007/s10064-015-0726-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 75 2015 1 26 02 101-108 |
allfields_unstemmed |
10.1007/s10064-015-0726-9 doi (DE-627)OLC206168808X (DE-He213)s10064-015-0726-9-p DE-627 ger DE-627 rakwb eng 550 600 VZ Xie, Tao verfasserin aut Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract A new water–sediment separation structure with a herringbone separation grid has been developed for debris flow defense. Previous model experiments showed that, compared to existing structures, this structure can continuously maintain its water–sediment separation function. However, in the structure design, the length of the separation grid is key to its success in separating water and sediment. This paper presents a theoretical formula for calculating the design length of the grid. The theoretical formula shows that the grid length relates to the debris flow velocity vx, the grid width B, and the grid incline angle θ. A series of model experiments were conducted in the laboratory to test the accuracy of the formula. The results show that the experimental value and the theoretical value for grid length form a linear relationship and the design length of the grid may be corrected by a coefficient. Further analysis indicates that the correction coefficient changes with the bulk density of debris flow. Finally, a formula for determining the grid design length is derived from the theoretical formula, corrected using a coefficient related to the bulk density of a debris flow. Debris flow Water–sediment separation structure Herringbone water–sediment separation grid Structure dimension Debris flow defense Wei, Fangqiang aut Yang, Hongjuan aut Gardner, James S. aut Xie, Xiangping aut Dai, Zhiqiang aut Jiang, Zhen aut Enthalten in Bulletin of engineering geology and the environment Springer Berlin Heidelberg, 1998 75(2015), 1 vom: 26. Feb., Seite 101-108 (DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 1435-9529 nnns volume:75 year:2015 number:1 day:26 month:02 pages:101-108 https://doi.org/10.1007/s10064-015-0726-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 75 2015 1 26 02 101-108 |
allfieldsGer |
10.1007/s10064-015-0726-9 doi (DE-627)OLC206168808X (DE-He213)s10064-015-0726-9-p DE-627 ger DE-627 rakwb eng 550 600 VZ Xie, Tao verfasserin aut Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract A new water–sediment separation structure with a herringbone separation grid has been developed for debris flow defense. Previous model experiments showed that, compared to existing structures, this structure can continuously maintain its water–sediment separation function. However, in the structure design, the length of the separation grid is key to its success in separating water and sediment. This paper presents a theoretical formula for calculating the design length of the grid. The theoretical formula shows that the grid length relates to the debris flow velocity vx, the grid width B, and the grid incline angle θ. A series of model experiments were conducted in the laboratory to test the accuracy of the formula. The results show that the experimental value and the theoretical value for grid length form a linear relationship and the design length of the grid may be corrected by a coefficient. Further analysis indicates that the correction coefficient changes with the bulk density of debris flow. Finally, a formula for determining the grid design length is derived from the theoretical formula, corrected using a coefficient related to the bulk density of a debris flow. Debris flow Water–sediment separation structure Herringbone water–sediment separation grid Structure dimension Debris flow defense Wei, Fangqiang aut Yang, Hongjuan aut Gardner, James S. aut Xie, Xiangping aut Dai, Zhiqiang aut Jiang, Zhen aut Enthalten in Bulletin of engineering geology and the environment Springer Berlin Heidelberg, 1998 75(2015), 1 vom: 26. Feb., Seite 101-108 (DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 1435-9529 nnns volume:75 year:2015 number:1 day:26 month:02 pages:101-108 https://doi.org/10.1007/s10064-015-0726-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 75 2015 1 26 02 101-108 |
allfieldsSound |
10.1007/s10064-015-0726-9 doi (DE-627)OLC206168808X (DE-He213)s10064-015-0726-9-p DE-627 ger DE-627 rakwb eng 550 600 VZ Xie, Tao verfasserin aut Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract A new water–sediment separation structure with a herringbone separation grid has been developed for debris flow defense. Previous model experiments showed that, compared to existing structures, this structure can continuously maintain its water–sediment separation function. However, in the structure design, the length of the separation grid is key to its success in separating water and sediment. This paper presents a theoretical formula for calculating the design length of the grid. The theoretical formula shows that the grid length relates to the debris flow velocity vx, the grid width B, and the grid incline angle θ. A series of model experiments were conducted in the laboratory to test the accuracy of the formula. The results show that the experimental value and the theoretical value for grid length form a linear relationship and the design length of the grid may be corrected by a coefficient. Further analysis indicates that the correction coefficient changes with the bulk density of debris flow. Finally, a formula for determining the grid design length is derived from the theoretical formula, corrected using a coefficient related to the bulk density of a debris flow. Debris flow Water–sediment separation structure Herringbone water–sediment separation grid Structure dimension Debris flow defense Wei, Fangqiang aut Yang, Hongjuan aut Gardner, James S. aut Xie, Xiangping aut Dai, Zhiqiang aut Jiang, Zhen aut Enthalten in Bulletin of engineering geology and the environment Springer Berlin Heidelberg, 1998 75(2015), 1 vom: 26. Feb., Seite 101-108 (DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 1435-9529 nnns volume:75 year:2015 number:1 day:26 month:02 pages:101-108 https://doi.org/10.1007/s10064-015-0726-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 75 2015 1 26 02 101-108 |
language |
English |
source |
Enthalten in Bulletin of engineering geology and the environment 75(2015), 1 vom: 26. Feb., Seite 101-108 volume:75 year:2015 number:1 day:26 month:02 pages:101-108 |
sourceStr |
Enthalten in Bulletin of engineering geology and the environment 75(2015), 1 vom: 26. Feb., Seite 101-108 volume:75 year:2015 number:1 day:26 month:02 pages:101-108 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Debris flow Water–sediment separation structure Herringbone water–sediment separation grid Structure dimension Debris flow defense |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Bulletin of engineering geology and the environment |
authorswithroles_txt_mv |
Xie, Tao @@aut@@ Wei, Fangqiang @@aut@@ Yang, Hongjuan @@aut@@ Gardner, James S. @@aut@@ Xie, Xiangping @@aut@@ Dai, Zhiqiang @@aut@@ Jiang, Zhen @@aut@@ |
publishDateDaySort_date |
2015-02-26T00:00:00Z |
hierarchy_top_id |
24891880X |
dewey-sort |
3550 |
id |
OLC206168808X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206168808X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502165406.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10064-015-0726-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206168808X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10064-015-0726-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xie, Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A new water–sediment separation structure with a herringbone separation grid has been developed for debris flow defense. Previous model experiments showed that, compared to existing structures, this structure can continuously maintain its water–sediment separation function. However, in the structure design, the length of the separation grid is key to its success in separating water and sediment. This paper presents a theoretical formula for calculating the design length of the grid. The theoretical formula shows that the grid length relates to the debris flow velocity vx, the grid width B, and the grid incline angle θ. A series of model experiments were conducted in the laboratory to test the accuracy of the formula. The results show that the experimental value and the theoretical value for grid length form a linear relationship and the design length of the grid may be corrected by a coefficient. Further analysis indicates that the correction coefficient changes with the bulk density of debris flow. Finally, a formula for determining the grid design length is derived from the theoretical formula, corrected using a coefficient related to the bulk density of a debris flow.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Debris flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water–sediment separation structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Herringbone water–sediment separation grid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structure dimension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Debris flow defense</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Fangqiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Hongjuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gardner, James S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Xiangping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Zhiqiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Zhen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Bulletin of engineering geology and the environment</subfield><subfield code="d">Springer Berlin Heidelberg, 1998</subfield><subfield code="g">75(2015), 1 vom: 26. Feb., Seite 101-108</subfield><subfield code="w">(DE-627)24891880X</subfield><subfield code="w">(DE-600)1444574-8</subfield><subfield code="w">(DE-576)068745818</subfield><subfield code="x">1435-9529</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:101-108</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10064-015-0726-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">02</subfield><subfield code="h">101-108</subfield></datafield></record></collection>
|
author |
Xie, Tao |
spellingShingle |
Xie, Tao ddc 550 misc Debris flow misc Water–sediment separation structure misc Herringbone water–sediment separation grid misc Structure dimension misc Debris flow defense Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense |
authorStr |
Xie, Tao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)24891880X |
format |
Article |
dewey-ones |
550 - Earth sciences 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1435-9529 |
topic_title |
550 600 VZ Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense Debris flow Water–sediment separation structure Herringbone water–sediment separation grid Structure dimension Debris flow defense |
topic |
ddc 550 misc Debris flow misc Water–sediment separation structure misc Herringbone water–sediment separation grid misc Structure dimension misc Debris flow defense |
topic_unstemmed |
ddc 550 misc Debris flow misc Water–sediment separation structure misc Herringbone water–sediment separation grid misc Structure dimension misc Debris flow defense |
topic_browse |
ddc 550 misc Debris flow misc Water–sediment separation structure misc Herringbone water–sediment separation grid misc Structure dimension misc Debris flow defense |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Bulletin of engineering geology and the environment |
hierarchy_parent_id |
24891880X |
dewey-tens |
550 - Earth sciences & geology 600 - Technology |
hierarchy_top_title |
Bulletin of engineering geology and the environment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 |
title |
Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense |
ctrlnum |
(DE-627)OLC206168808X (DE-He213)s10064-015-0726-9-p |
title_full |
Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense |
author_sort |
Xie, Tao |
journal |
Bulletin of engineering geology and the environment |
journalStr |
Bulletin of engineering geology and the environment |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
101 |
author_browse |
Xie, Tao Wei, Fangqiang Yang, Hongjuan Gardner, James S. Xie, Xiangping Dai, Zhiqiang Jiang, Zhen |
container_volume |
75 |
class |
550 600 VZ |
format_se |
Aufsätze |
author-letter |
Xie, Tao |
doi_str_mv |
10.1007/s10064-015-0726-9 |
dewey-full |
550 600 |
title_sort |
calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense |
title_auth |
Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense |
abstract |
Abstract A new water–sediment separation structure with a herringbone separation grid has been developed for debris flow defense. Previous model experiments showed that, compared to existing structures, this structure can continuously maintain its water–sediment separation function. However, in the structure design, the length of the separation grid is key to its success in separating water and sediment. This paper presents a theoretical formula for calculating the design length of the grid. The theoretical formula shows that the grid length relates to the debris flow velocity vx, the grid width B, and the grid incline angle θ. A series of model experiments were conducted in the laboratory to test the accuracy of the formula. The results show that the experimental value and the theoretical value for grid length form a linear relationship and the design length of the grid may be corrected by a coefficient. Further analysis indicates that the correction coefficient changes with the bulk density of debris flow. Finally, a formula for determining the grid design length is derived from the theoretical formula, corrected using a coefficient related to the bulk density of a debris flow. © Springer-Verlag Berlin Heidelberg 2015 |
abstractGer |
Abstract A new water–sediment separation structure with a herringbone separation grid has been developed for debris flow defense. Previous model experiments showed that, compared to existing structures, this structure can continuously maintain its water–sediment separation function. However, in the structure design, the length of the separation grid is key to its success in separating water and sediment. This paper presents a theoretical formula for calculating the design length of the grid. The theoretical formula shows that the grid length relates to the debris flow velocity vx, the grid width B, and the grid incline angle θ. A series of model experiments were conducted in the laboratory to test the accuracy of the formula. The results show that the experimental value and the theoretical value for grid length form a linear relationship and the design length of the grid may be corrected by a coefficient. Further analysis indicates that the correction coefficient changes with the bulk density of debris flow. Finally, a formula for determining the grid design length is derived from the theoretical formula, corrected using a coefficient related to the bulk density of a debris flow. © Springer-Verlag Berlin Heidelberg 2015 |
abstract_unstemmed |
Abstract A new water–sediment separation structure with a herringbone separation grid has been developed for debris flow defense. Previous model experiments showed that, compared to existing structures, this structure can continuously maintain its water–sediment separation function. However, in the structure design, the length of the separation grid is key to its success in separating water and sediment. This paper presents a theoretical formula for calculating the design length of the grid. The theoretical formula shows that the grid length relates to the debris flow velocity vx, the grid width B, and the grid incline angle θ. A series of model experiments were conducted in the laboratory to test the accuracy of the formula. The results show that the experimental value and the theoretical value for grid length form a linear relationship and the design length of the grid may be corrected by a coefficient. Further analysis indicates that the correction coefficient changes with the bulk density of debris flow. Finally, a formula for determining the grid design length is derived from the theoretical formula, corrected using a coefficient related to the bulk density of a debris flow. © Springer-Verlag Berlin Heidelberg 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
1 |
title_short |
Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense |
url |
https://doi.org/10.1007/s10064-015-0726-9 |
remote_bool |
false |
author2 |
Wei, Fangqiang Yang, Hongjuan Gardner, James S. Xie, Xiangping Dai, Zhiqiang Jiang, Zhen |
author2Str |
Wei, Fangqiang Yang, Hongjuan Gardner, James S. Xie, Xiangping Dai, Zhiqiang Jiang, Zhen |
ppnlink |
24891880X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10064-015-0726-9 |
up_date |
2024-07-04T04:09:59.797Z |
_version_ |
1803620135520436224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206168808X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502165406.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10064-015-0726-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206168808X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10064-015-0726-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xie, Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A new water–sediment separation structure with a herringbone separation grid has been developed for debris flow defense. Previous model experiments showed that, compared to existing structures, this structure can continuously maintain its water–sediment separation function. However, in the structure design, the length of the separation grid is key to its success in separating water and sediment. This paper presents a theoretical formula for calculating the design length of the grid. The theoretical formula shows that the grid length relates to the debris flow velocity vx, the grid width B, and the grid incline angle θ. A series of model experiments were conducted in the laboratory to test the accuracy of the formula. The results show that the experimental value and the theoretical value for grid length form a linear relationship and the design length of the grid may be corrected by a coefficient. Further analysis indicates that the correction coefficient changes with the bulk density of debris flow. Finally, a formula for determining the grid design length is derived from the theoretical formula, corrected using a coefficient related to the bulk density of a debris flow.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Debris flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water–sediment separation structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Herringbone water–sediment separation grid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structure dimension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Debris flow defense</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Fangqiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Hongjuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gardner, James S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Xiangping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Zhiqiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Zhen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Bulletin of engineering geology and the environment</subfield><subfield code="d">Springer Berlin Heidelberg, 1998</subfield><subfield code="g">75(2015), 1 vom: 26. Feb., Seite 101-108</subfield><subfield code="w">(DE-627)24891880X</subfield><subfield code="w">(DE-600)1444574-8</subfield><subfield code="w">(DE-576)068745818</subfield><subfield code="x">1435-9529</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:101-108</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10064-015-0726-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">02</subfield><subfield code="h">101-108</subfield></datafield></record></collection>
|
score |
7.4022093 |