Modification of rock mass strength assessment methods and their application in geotechnical engineering
Abstract Due to complicated structures and discontinuities in surrounding rock mass, existing empirical failure criteria cannot meet the requirements of engineering practice such as tunnels. To improve estimation accuracy on the strength of rock mass with joints, a modified chart of the Geological S...
Ausführliche Beschreibung
Autor*in: |
Lin, Daming [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Bulletin of engineering geology and the environment - Springer Berlin Heidelberg, 1998, 76(2016), 4 vom: 14. Okt., Seite 1471-1480 |
---|---|
Übergeordnetes Werk: |
volume:76 ; year:2016 ; number:4 ; day:14 ; month:10 ; pages:1471-1480 |
Links: |
---|
DOI / URN: |
10.1007/s10064-016-0952-9 |
---|
Katalog-ID: |
OLC2061690130 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2061690130 | ||
003 | DE-627 | ||
005 | 20230502165414.0 | ||
007 | tu | ||
008 | 200819s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10064-016-0952-9 |2 doi | |
035 | |a (DE-627)OLC2061690130 | ||
035 | |a (DE-He213)s10064-016-0952-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |a 600 |q VZ |
100 | 1 | |a Lin, Daming |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modification of rock mass strength assessment methods and their application in geotechnical engineering |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2016 | ||
520 | |a Abstract Due to complicated structures and discontinuities in surrounding rock mass, existing empirical failure criteria cannot meet the requirements of engineering practice such as tunnels. To improve estimation accuracy on the strength of rock mass with joints, a modified chart of the Geological Strength Index using Hoek–Brown criteria was further tested to estimate rock mass strength [Lin et al. (2014) Bull Eng Geol Environ 4(73):1245–1258], and, in this paper, new strength estimation equations for jointed rock mass were then modified based on a large dataset obtained from Chinese projects. Here, standard drilling time is first introduced and described in this study, and then used as a parameter to estimate rock strength. Different empirical formulas based on joint density, rock mass classification, Hoek–Brown criteria, and elastic wave velocity are thus used to estimate rock mass strength by using data from the Jiubao tunnel. The results estimated based on different empirical formulas were similar, indicating that the modified assessment method presented in this paper can be used to estimate rock mass strength under certain circumstances. Cross-correlation of different empirical methods provides significant confidence in predicted rock mass strength calculations. | ||
650 | 4 | |a Rock mass strength estimation | |
650 | 4 | |a Joint density | |
650 | 4 | |a Velocity of elastic waves | |
650 | 4 | |a Drilling time | |
650 | 4 | |a The Jiubao tunnel | |
700 | 1 | |a Wang, Kaiyang |4 aut | |
700 | 1 | |a Li, Kun |4 aut | |
700 | 1 | |a He, Wantong |4 aut | |
700 | 1 | |a Bao, Weixing |4 aut | |
700 | 1 | |a Yuan, Renmao |4 aut | |
700 | 1 | |a Shang, Yanjun |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Bulletin of engineering geology and the environment |d Springer Berlin Heidelberg, 1998 |g 76(2016), 4 vom: 14. Okt., Seite 1471-1480 |w (DE-627)24891880X |w (DE-600)1444574-8 |w (DE-576)068745818 |x 1435-9529 |7 nnns |
773 | 1 | 8 | |g volume:76 |g year:2016 |g number:4 |g day:14 |g month:10 |g pages:1471-1480 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10064-016-0952-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 76 |j 2016 |e 4 |b 14 |c 10 |h 1471-1480 |
author_variant |
d l dl k w kw k l kl w h wh w b wb r y ry y s ys |
---|---|
matchkey_str |
article:14359529:2016----::oiiainfokasteghsesetehdadhiapiain |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s10064-016-0952-9 doi (DE-627)OLC2061690130 (DE-He213)s10064-016-0952-9-p DE-627 ger DE-627 rakwb eng 550 600 VZ Lin, Daming verfasserin aut Modification of rock mass strength assessment methods and their application in geotechnical engineering 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract Due to complicated structures and discontinuities in surrounding rock mass, existing empirical failure criteria cannot meet the requirements of engineering practice such as tunnels. To improve estimation accuracy on the strength of rock mass with joints, a modified chart of the Geological Strength Index using Hoek–Brown criteria was further tested to estimate rock mass strength [Lin et al. (2014) Bull Eng Geol Environ 4(73):1245–1258], and, in this paper, new strength estimation equations for jointed rock mass were then modified based on a large dataset obtained from Chinese projects. Here, standard drilling time is first introduced and described in this study, and then used as a parameter to estimate rock strength. Different empirical formulas based on joint density, rock mass classification, Hoek–Brown criteria, and elastic wave velocity are thus used to estimate rock mass strength by using data from the Jiubao tunnel. The results estimated based on different empirical formulas were similar, indicating that the modified assessment method presented in this paper can be used to estimate rock mass strength under certain circumstances. Cross-correlation of different empirical methods provides significant confidence in predicted rock mass strength calculations. Rock mass strength estimation Joint density Velocity of elastic waves Drilling time The Jiubao tunnel Wang, Kaiyang aut Li, Kun aut He, Wantong aut Bao, Weixing aut Yuan, Renmao aut Shang, Yanjun aut Enthalten in Bulletin of engineering geology and the environment Springer Berlin Heidelberg, 1998 76(2016), 4 vom: 14. Okt., Seite 1471-1480 (DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 1435-9529 nnns volume:76 year:2016 number:4 day:14 month:10 pages:1471-1480 https://doi.org/10.1007/s10064-016-0952-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 76 2016 4 14 10 1471-1480 |
spelling |
10.1007/s10064-016-0952-9 doi (DE-627)OLC2061690130 (DE-He213)s10064-016-0952-9-p DE-627 ger DE-627 rakwb eng 550 600 VZ Lin, Daming verfasserin aut Modification of rock mass strength assessment methods and their application in geotechnical engineering 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract Due to complicated structures and discontinuities in surrounding rock mass, existing empirical failure criteria cannot meet the requirements of engineering practice such as tunnels. To improve estimation accuracy on the strength of rock mass with joints, a modified chart of the Geological Strength Index using Hoek–Brown criteria was further tested to estimate rock mass strength [Lin et al. (2014) Bull Eng Geol Environ 4(73):1245–1258], and, in this paper, new strength estimation equations for jointed rock mass were then modified based on a large dataset obtained from Chinese projects. Here, standard drilling time is first introduced and described in this study, and then used as a parameter to estimate rock strength. Different empirical formulas based on joint density, rock mass classification, Hoek–Brown criteria, and elastic wave velocity are thus used to estimate rock mass strength by using data from the Jiubao tunnel. The results estimated based on different empirical formulas were similar, indicating that the modified assessment method presented in this paper can be used to estimate rock mass strength under certain circumstances. Cross-correlation of different empirical methods provides significant confidence in predicted rock mass strength calculations. Rock mass strength estimation Joint density Velocity of elastic waves Drilling time The Jiubao tunnel Wang, Kaiyang aut Li, Kun aut He, Wantong aut Bao, Weixing aut Yuan, Renmao aut Shang, Yanjun aut Enthalten in Bulletin of engineering geology and the environment Springer Berlin Heidelberg, 1998 76(2016), 4 vom: 14. Okt., Seite 1471-1480 (DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 1435-9529 nnns volume:76 year:2016 number:4 day:14 month:10 pages:1471-1480 https://doi.org/10.1007/s10064-016-0952-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 76 2016 4 14 10 1471-1480 |
allfields_unstemmed |
10.1007/s10064-016-0952-9 doi (DE-627)OLC2061690130 (DE-He213)s10064-016-0952-9-p DE-627 ger DE-627 rakwb eng 550 600 VZ Lin, Daming verfasserin aut Modification of rock mass strength assessment methods and their application in geotechnical engineering 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract Due to complicated structures and discontinuities in surrounding rock mass, existing empirical failure criteria cannot meet the requirements of engineering practice such as tunnels. To improve estimation accuracy on the strength of rock mass with joints, a modified chart of the Geological Strength Index using Hoek–Brown criteria was further tested to estimate rock mass strength [Lin et al. (2014) Bull Eng Geol Environ 4(73):1245–1258], and, in this paper, new strength estimation equations for jointed rock mass were then modified based on a large dataset obtained from Chinese projects. Here, standard drilling time is first introduced and described in this study, and then used as a parameter to estimate rock strength. Different empirical formulas based on joint density, rock mass classification, Hoek–Brown criteria, and elastic wave velocity are thus used to estimate rock mass strength by using data from the Jiubao tunnel. The results estimated based on different empirical formulas were similar, indicating that the modified assessment method presented in this paper can be used to estimate rock mass strength under certain circumstances. Cross-correlation of different empirical methods provides significant confidence in predicted rock mass strength calculations. Rock mass strength estimation Joint density Velocity of elastic waves Drilling time The Jiubao tunnel Wang, Kaiyang aut Li, Kun aut He, Wantong aut Bao, Weixing aut Yuan, Renmao aut Shang, Yanjun aut Enthalten in Bulletin of engineering geology and the environment Springer Berlin Heidelberg, 1998 76(2016), 4 vom: 14. Okt., Seite 1471-1480 (DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 1435-9529 nnns volume:76 year:2016 number:4 day:14 month:10 pages:1471-1480 https://doi.org/10.1007/s10064-016-0952-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 76 2016 4 14 10 1471-1480 |
allfieldsGer |
10.1007/s10064-016-0952-9 doi (DE-627)OLC2061690130 (DE-He213)s10064-016-0952-9-p DE-627 ger DE-627 rakwb eng 550 600 VZ Lin, Daming verfasserin aut Modification of rock mass strength assessment methods and their application in geotechnical engineering 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract Due to complicated structures and discontinuities in surrounding rock mass, existing empirical failure criteria cannot meet the requirements of engineering practice such as tunnels. To improve estimation accuracy on the strength of rock mass with joints, a modified chart of the Geological Strength Index using Hoek–Brown criteria was further tested to estimate rock mass strength [Lin et al. (2014) Bull Eng Geol Environ 4(73):1245–1258], and, in this paper, new strength estimation equations for jointed rock mass were then modified based on a large dataset obtained from Chinese projects. Here, standard drilling time is first introduced and described in this study, and then used as a parameter to estimate rock strength. Different empirical formulas based on joint density, rock mass classification, Hoek–Brown criteria, and elastic wave velocity are thus used to estimate rock mass strength by using data from the Jiubao tunnel. The results estimated based on different empirical formulas were similar, indicating that the modified assessment method presented in this paper can be used to estimate rock mass strength under certain circumstances. Cross-correlation of different empirical methods provides significant confidence in predicted rock mass strength calculations. Rock mass strength estimation Joint density Velocity of elastic waves Drilling time The Jiubao tunnel Wang, Kaiyang aut Li, Kun aut He, Wantong aut Bao, Weixing aut Yuan, Renmao aut Shang, Yanjun aut Enthalten in Bulletin of engineering geology and the environment Springer Berlin Heidelberg, 1998 76(2016), 4 vom: 14. Okt., Seite 1471-1480 (DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 1435-9529 nnns volume:76 year:2016 number:4 day:14 month:10 pages:1471-1480 https://doi.org/10.1007/s10064-016-0952-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 76 2016 4 14 10 1471-1480 |
allfieldsSound |
10.1007/s10064-016-0952-9 doi (DE-627)OLC2061690130 (DE-He213)s10064-016-0952-9-p DE-627 ger DE-627 rakwb eng 550 600 VZ Lin, Daming verfasserin aut Modification of rock mass strength assessment methods and their application in geotechnical engineering 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract Due to complicated structures and discontinuities in surrounding rock mass, existing empirical failure criteria cannot meet the requirements of engineering practice such as tunnels. To improve estimation accuracy on the strength of rock mass with joints, a modified chart of the Geological Strength Index using Hoek–Brown criteria was further tested to estimate rock mass strength [Lin et al. (2014) Bull Eng Geol Environ 4(73):1245–1258], and, in this paper, new strength estimation equations for jointed rock mass were then modified based on a large dataset obtained from Chinese projects. Here, standard drilling time is first introduced and described in this study, and then used as a parameter to estimate rock strength. Different empirical formulas based on joint density, rock mass classification, Hoek–Brown criteria, and elastic wave velocity are thus used to estimate rock mass strength by using data from the Jiubao tunnel. The results estimated based on different empirical formulas were similar, indicating that the modified assessment method presented in this paper can be used to estimate rock mass strength under certain circumstances. Cross-correlation of different empirical methods provides significant confidence in predicted rock mass strength calculations. Rock mass strength estimation Joint density Velocity of elastic waves Drilling time The Jiubao tunnel Wang, Kaiyang aut Li, Kun aut He, Wantong aut Bao, Weixing aut Yuan, Renmao aut Shang, Yanjun aut Enthalten in Bulletin of engineering geology and the environment Springer Berlin Heidelberg, 1998 76(2016), 4 vom: 14. Okt., Seite 1471-1480 (DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 1435-9529 nnns volume:76 year:2016 number:4 day:14 month:10 pages:1471-1480 https://doi.org/10.1007/s10064-016-0952-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 76 2016 4 14 10 1471-1480 |
language |
English |
source |
Enthalten in Bulletin of engineering geology and the environment 76(2016), 4 vom: 14. Okt., Seite 1471-1480 volume:76 year:2016 number:4 day:14 month:10 pages:1471-1480 |
sourceStr |
Enthalten in Bulletin of engineering geology and the environment 76(2016), 4 vom: 14. Okt., Seite 1471-1480 volume:76 year:2016 number:4 day:14 month:10 pages:1471-1480 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Rock mass strength estimation Joint density Velocity of elastic waves Drilling time The Jiubao tunnel |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Bulletin of engineering geology and the environment |
authorswithroles_txt_mv |
Lin, Daming @@aut@@ Wang, Kaiyang @@aut@@ Li, Kun @@aut@@ He, Wantong @@aut@@ Bao, Weixing @@aut@@ Yuan, Renmao @@aut@@ Shang, Yanjun @@aut@@ |
publishDateDaySort_date |
2016-10-14T00:00:00Z |
hierarchy_top_id |
24891880X |
dewey-sort |
3550 |
id |
OLC2061690130 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2061690130</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502165414.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10064-016-0952-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2061690130</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10064-016-0952-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lin, Daming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modification of rock mass strength assessment methods and their application in geotechnical engineering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Due to complicated structures and discontinuities in surrounding rock mass, existing empirical failure criteria cannot meet the requirements of engineering practice such as tunnels. To improve estimation accuracy on the strength of rock mass with joints, a modified chart of the Geological Strength Index using Hoek–Brown criteria was further tested to estimate rock mass strength [Lin et al. (2014) Bull Eng Geol Environ 4(73):1245–1258], and, in this paper, new strength estimation equations for jointed rock mass were then modified based on a large dataset obtained from Chinese projects. Here, standard drilling time is first introduced and described in this study, and then used as a parameter to estimate rock strength. Different empirical formulas based on joint density, rock mass classification, Hoek–Brown criteria, and elastic wave velocity are thus used to estimate rock mass strength by using data from the Jiubao tunnel. The results estimated based on different empirical formulas were similar, indicating that the modified assessment method presented in this paper can be used to estimate rock mass strength under certain circumstances. Cross-correlation of different empirical methods provides significant confidence in predicted rock mass strength calculations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rock mass strength estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Joint density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Velocity of elastic waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drilling time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The Jiubao tunnel</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kaiyang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Kun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Wantong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bao, Weixing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Renmao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shang, Yanjun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Bulletin of engineering geology and the environment</subfield><subfield code="d">Springer Berlin Heidelberg, 1998</subfield><subfield code="g">76(2016), 4 vom: 14. Okt., Seite 1471-1480</subfield><subfield code="w">(DE-627)24891880X</subfield><subfield code="w">(DE-600)1444574-8</subfield><subfield code="w">(DE-576)068745818</subfield><subfield code="x">1435-9529</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">day:14</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1471-1480</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10064-016-0952-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="b">14</subfield><subfield code="c">10</subfield><subfield code="h">1471-1480</subfield></datafield></record></collection>
|
author |
Lin, Daming |
spellingShingle |
Lin, Daming ddc 550 misc Rock mass strength estimation misc Joint density misc Velocity of elastic waves misc Drilling time misc The Jiubao tunnel Modification of rock mass strength assessment methods and their application in geotechnical engineering |
authorStr |
Lin, Daming |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)24891880X |
format |
Article |
dewey-ones |
550 - Earth sciences 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1435-9529 |
topic_title |
550 600 VZ Modification of rock mass strength assessment methods and their application in geotechnical engineering Rock mass strength estimation Joint density Velocity of elastic waves Drilling time The Jiubao tunnel |
topic |
ddc 550 misc Rock mass strength estimation misc Joint density misc Velocity of elastic waves misc Drilling time misc The Jiubao tunnel |
topic_unstemmed |
ddc 550 misc Rock mass strength estimation misc Joint density misc Velocity of elastic waves misc Drilling time misc The Jiubao tunnel |
topic_browse |
ddc 550 misc Rock mass strength estimation misc Joint density misc Velocity of elastic waves misc Drilling time misc The Jiubao tunnel |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Bulletin of engineering geology and the environment |
hierarchy_parent_id |
24891880X |
dewey-tens |
550 - Earth sciences & geology 600 - Technology |
hierarchy_top_title |
Bulletin of engineering geology and the environment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 |
title |
Modification of rock mass strength assessment methods and their application in geotechnical engineering |
ctrlnum |
(DE-627)OLC2061690130 (DE-He213)s10064-016-0952-9-p |
title_full |
Modification of rock mass strength assessment methods and their application in geotechnical engineering |
author_sort |
Lin, Daming |
journal |
Bulletin of engineering geology and the environment |
journalStr |
Bulletin of engineering geology and the environment |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1471 |
author_browse |
Lin, Daming Wang, Kaiyang Li, Kun He, Wantong Bao, Weixing Yuan, Renmao Shang, Yanjun |
container_volume |
76 |
class |
550 600 VZ |
format_se |
Aufsätze |
author-letter |
Lin, Daming |
doi_str_mv |
10.1007/s10064-016-0952-9 |
dewey-full |
550 600 |
title_sort |
modification of rock mass strength assessment methods and their application in geotechnical engineering |
title_auth |
Modification of rock mass strength assessment methods and their application in geotechnical engineering |
abstract |
Abstract Due to complicated structures and discontinuities in surrounding rock mass, existing empirical failure criteria cannot meet the requirements of engineering practice such as tunnels. To improve estimation accuracy on the strength of rock mass with joints, a modified chart of the Geological Strength Index using Hoek–Brown criteria was further tested to estimate rock mass strength [Lin et al. (2014) Bull Eng Geol Environ 4(73):1245–1258], and, in this paper, new strength estimation equations for jointed rock mass were then modified based on a large dataset obtained from Chinese projects. Here, standard drilling time is first introduced and described in this study, and then used as a parameter to estimate rock strength. Different empirical formulas based on joint density, rock mass classification, Hoek–Brown criteria, and elastic wave velocity are thus used to estimate rock mass strength by using data from the Jiubao tunnel. The results estimated based on different empirical formulas were similar, indicating that the modified assessment method presented in this paper can be used to estimate rock mass strength under certain circumstances. Cross-correlation of different empirical methods provides significant confidence in predicted rock mass strength calculations. © Springer-Verlag Berlin Heidelberg 2016 |
abstractGer |
Abstract Due to complicated structures and discontinuities in surrounding rock mass, existing empirical failure criteria cannot meet the requirements of engineering practice such as tunnels. To improve estimation accuracy on the strength of rock mass with joints, a modified chart of the Geological Strength Index using Hoek–Brown criteria was further tested to estimate rock mass strength [Lin et al. (2014) Bull Eng Geol Environ 4(73):1245–1258], and, in this paper, new strength estimation equations for jointed rock mass were then modified based on a large dataset obtained from Chinese projects. Here, standard drilling time is first introduced and described in this study, and then used as a parameter to estimate rock strength. Different empirical formulas based on joint density, rock mass classification, Hoek–Brown criteria, and elastic wave velocity are thus used to estimate rock mass strength by using data from the Jiubao tunnel. The results estimated based on different empirical formulas were similar, indicating that the modified assessment method presented in this paper can be used to estimate rock mass strength under certain circumstances. Cross-correlation of different empirical methods provides significant confidence in predicted rock mass strength calculations. © Springer-Verlag Berlin Heidelberg 2016 |
abstract_unstemmed |
Abstract Due to complicated structures and discontinuities in surrounding rock mass, existing empirical failure criteria cannot meet the requirements of engineering practice such as tunnels. To improve estimation accuracy on the strength of rock mass with joints, a modified chart of the Geological Strength Index using Hoek–Brown criteria was further tested to estimate rock mass strength [Lin et al. (2014) Bull Eng Geol Environ 4(73):1245–1258], and, in this paper, new strength estimation equations for jointed rock mass were then modified based on a large dataset obtained from Chinese projects. Here, standard drilling time is first introduced and described in this study, and then used as a parameter to estimate rock strength. Different empirical formulas based on joint density, rock mass classification, Hoek–Brown criteria, and elastic wave velocity are thus used to estimate rock mass strength by using data from the Jiubao tunnel. The results estimated based on different empirical formulas were similar, indicating that the modified assessment method presented in this paper can be used to estimate rock mass strength under certain circumstances. Cross-correlation of different empirical methods provides significant confidence in predicted rock mass strength calculations. © Springer-Verlag Berlin Heidelberg 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
4 |
title_short |
Modification of rock mass strength assessment methods and their application in geotechnical engineering |
url |
https://doi.org/10.1007/s10064-016-0952-9 |
remote_bool |
false |
author2 |
Wang, Kaiyang Li, Kun He, Wantong Bao, Weixing Yuan, Renmao Shang, Yanjun |
author2Str |
Wang, Kaiyang Li, Kun He, Wantong Bao, Weixing Yuan, Renmao Shang, Yanjun |
ppnlink |
24891880X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10064-016-0952-9 |
up_date |
2024-07-04T04:10:21.001Z |
_version_ |
1803620157755490304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2061690130</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502165414.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10064-016-0952-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2061690130</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10064-016-0952-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lin, Daming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modification of rock mass strength assessment methods and their application in geotechnical engineering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Due to complicated structures and discontinuities in surrounding rock mass, existing empirical failure criteria cannot meet the requirements of engineering practice such as tunnels. To improve estimation accuracy on the strength of rock mass with joints, a modified chart of the Geological Strength Index using Hoek–Brown criteria was further tested to estimate rock mass strength [Lin et al. (2014) Bull Eng Geol Environ 4(73):1245–1258], and, in this paper, new strength estimation equations for jointed rock mass were then modified based on a large dataset obtained from Chinese projects. Here, standard drilling time is first introduced and described in this study, and then used as a parameter to estimate rock strength. Different empirical formulas based on joint density, rock mass classification, Hoek–Brown criteria, and elastic wave velocity are thus used to estimate rock mass strength by using data from the Jiubao tunnel. The results estimated based on different empirical formulas were similar, indicating that the modified assessment method presented in this paper can be used to estimate rock mass strength under certain circumstances. Cross-correlation of different empirical methods provides significant confidence in predicted rock mass strength calculations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rock mass strength estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Joint density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Velocity of elastic waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drilling time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The Jiubao tunnel</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kaiyang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Kun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Wantong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bao, Weixing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Renmao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shang, Yanjun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Bulletin of engineering geology and the environment</subfield><subfield code="d">Springer Berlin Heidelberg, 1998</subfield><subfield code="g">76(2016), 4 vom: 14. Okt., Seite 1471-1480</subfield><subfield code="w">(DE-627)24891880X</subfield><subfield code="w">(DE-600)1444574-8</subfield><subfield code="w">(DE-576)068745818</subfield><subfield code="x">1435-9529</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">day:14</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1471-1480</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10064-016-0952-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="b">14</subfield><subfield code="c">10</subfield><subfield code="h">1471-1480</subfield></datafield></record></collection>
|
score |
7.4008055 |