Use of the Dynamic Model `MAGIC' to Predict Recovery Following Implementation of the Gothenburg Protocol
Abstract Reduction of sulphur deposition causesrecovery of acidified surface waters. Processes in thecatchment delay recovery. The acidification model MAGICwas applied to the Vikedal and Tovdal rivers in southernNorway. Response in water chemsitry is delayed by 10–20 yr. The delay is due to release...
Ausführliche Beschreibung
Autor*in: |
Wright, Richard F. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2001 |
---|
Anmerkung: |
© Kluwer Academic Publishers 2001 |
---|
Übergeordnetes Werk: |
Enthalten in: Water, air & soil pollution / Focus - Kluwer Academic Publishers, 2001, 1(2001), 1-2 vom: Jan., Seite 455-482 |
---|---|
Übergeordnetes Werk: |
volume:1 ; year:2001 ; number:1-2 ; month:01 ; pages:455-482 |
Links: |
---|
DOI / URN: |
10.1023/A:1011516913618 |
---|
Katalog-ID: |
OLC2062119682 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2062119682 | ||
003 | DE-627 | ||
005 | 20230504072617.0 | ||
007 | tu | ||
008 | 200819s2001 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1011516913618 |2 doi | |
035 | |a (DE-627)OLC2062119682 | ||
035 | |a (DE-He213)A:1011516913618-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 333.7 |q VZ |
084 | |a 12 |a 21 |2 ssgn | ||
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 43.50$jUmweltbelastungen |2 bkl | ||
100 | 1 | |a Wright, Richard F. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Use of the Dynamic Model `MAGIC' to Predict Recovery Following Implementation of the Gothenburg Protocol |
264 | 1 | |c 2001 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic Publishers 2001 | ||
520 | |a Abstract Reduction of sulphur deposition causesrecovery of acidified surface waters. Processes in thecatchment delay recovery. The acidification model MAGICwas applied to the Vikedal and Tovdal rivers in southernNorway. Response in water chemsitry is delayed by 10–20 yr. The delay is due to release of old sulphate atVikedal and cation exchange at Tovdal. Assuming that theGothenburg protocol is fully implemented by the year2010, much of the predicted increase of ANC will occur inthe next 10 yr with a levelling off by about 2040. Ifnitrogen leaching increases in the future, however,recovery of ANC will not be as rapid, nor as complete.Critical load for acidity calculated by steady-statemodels is confirmed by the MAGIC predictions. Futurerequirement for mitigation measures such as liming willdecrease in the future as acid deposition decreases. Bythe year 2046 the liming requirement will be reduced byabout 45% at Vikedal and 65% at Tovdal. One of the mainpurposes of the Norwegian national monitoring programmeis to provide documentation of changes in environmentalquality due to long-range transported air pollutants.Modelling applications such as this clearly show that thedata fill this purpose. | ||
773 | 0 | 8 | |i Enthalten in |t Water, air & soil pollution / Focus |d Kluwer Academic Publishers, 2001 |g 1(2001), 1-2 vom: Jan., Seite 455-482 |w (DE-627)330078380 |w (DE-600)2048822-1 |w (DE-576)515650463 |x 0049-6979 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:2001 |g number:1-2 |g month:01 |g pages:455-482 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1011516913618 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-IBL | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4219 | ||
936 | b | k | |a 43.50$jUmweltbelastungen |q VZ |0 106416782 |0 (DE-625)106416782 |
951 | |a AR | ||
952 | |d 1 |j 2001 |e 1-2 |c 01 |h 455-482 |
author_variant |
r f w rf rfw |
---|---|
matchkey_str |
article:00496979:2001----::soteyaimdlaitpeiteoeyolwnipeettoo |
hierarchy_sort_str |
2001 |
bklnumber |
43.50$jUmweltbelastungen |
publishDate |
2001 |
allfields |
10.1023/A:1011516913618 doi (DE-627)OLC2062119682 (DE-He213)A:1011516913618-p DE-627 ger DE-627 rakwb eng 570 333.7 VZ 12 21 ssgn BIODIV DE-30 fid 43.50$jUmweltbelastungen bkl Wright, Richard F. verfasserin aut Use of the Dynamic Model `MAGIC' to Predict Recovery Following Implementation of the Gothenburg Protocol 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2001 Abstract Reduction of sulphur deposition causesrecovery of acidified surface waters. Processes in thecatchment delay recovery. The acidification model MAGICwas applied to the Vikedal and Tovdal rivers in southernNorway. Response in water chemsitry is delayed by 10–20 yr. The delay is due to release of old sulphate atVikedal and cation exchange at Tovdal. Assuming that theGothenburg protocol is fully implemented by the year2010, much of the predicted increase of ANC will occur inthe next 10 yr with a levelling off by about 2040. Ifnitrogen leaching increases in the future, however,recovery of ANC will not be as rapid, nor as complete.Critical load for acidity calculated by steady-statemodels is confirmed by the MAGIC predictions. Futurerequirement for mitigation measures such as liming willdecrease in the future as acid deposition decreases. Bythe year 2046 the liming requirement will be reduced byabout 45% at Vikedal and 65% at Tovdal. One of the mainpurposes of the Norwegian national monitoring programmeis to provide documentation of changes in environmentalquality due to long-range transported air pollutants.Modelling applications such as this clearly show that thedata fill this purpose. Enthalten in Water, air & soil pollution / Focus Kluwer Academic Publishers, 2001 1(2001), 1-2 vom: Jan., Seite 455-482 (DE-627)330078380 (DE-600)2048822-1 (DE-576)515650463 0049-6979 nnns volume:1 year:2001 number:1-2 month:01 pages:455-482 https://doi.org/10.1023/A:1011516913618 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-FOR SSG-OLC-IBL GBV_ILN_4082 GBV_ILN_4219 43.50$jUmweltbelastungen VZ 106416782 (DE-625)106416782 AR 1 2001 1-2 01 455-482 |
spelling |
10.1023/A:1011516913618 doi (DE-627)OLC2062119682 (DE-He213)A:1011516913618-p DE-627 ger DE-627 rakwb eng 570 333.7 VZ 12 21 ssgn BIODIV DE-30 fid 43.50$jUmweltbelastungen bkl Wright, Richard F. verfasserin aut Use of the Dynamic Model `MAGIC' to Predict Recovery Following Implementation of the Gothenburg Protocol 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2001 Abstract Reduction of sulphur deposition causesrecovery of acidified surface waters. Processes in thecatchment delay recovery. The acidification model MAGICwas applied to the Vikedal and Tovdal rivers in southernNorway. Response in water chemsitry is delayed by 10–20 yr. The delay is due to release of old sulphate atVikedal and cation exchange at Tovdal. Assuming that theGothenburg protocol is fully implemented by the year2010, much of the predicted increase of ANC will occur inthe next 10 yr with a levelling off by about 2040. Ifnitrogen leaching increases in the future, however,recovery of ANC will not be as rapid, nor as complete.Critical load for acidity calculated by steady-statemodels is confirmed by the MAGIC predictions. Futurerequirement for mitigation measures such as liming willdecrease in the future as acid deposition decreases. Bythe year 2046 the liming requirement will be reduced byabout 45% at Vikedal and 65% at Tovdal. One of the mainpurposes of the Norwegian national monitoring programmeis to provide documentation of changes in environmentalquality due to long-range transported air pollutants.Modelling applications such as this clearly show that thedata fill this purpose. Enthalten in Water, air & soil pollution / Focus Kluwer Academic Publishers, 2001 1(2001), 1-2 vom: Jan., Seite 455-482 (DE-627)330078380 (DE-600)2048822-1 (DE-576)515650463 0049-6979 nnns volume:1 year:2001 number:1-2 month:01 pages:455-482 https://doi.org/10.1023/A:1011516913618 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-FOR SSG-OLC-IBL GBV_ILN_4082 GBV_ILN_4219 43.50$jUmweltbelastungen VZ 106416782 (DE-625)106416782 AR 1 2001 1-2 01 455-482 |
allfields_unstemmed |
10.1023/A:1011516913618 doi (DE-627)OLC2062119682 (DE-He213)A:1011516913618-p DE-627 ger DE-627 rakwb eng 570 333.7 VZ 12 21 ssgn BIODIV DE-30 fid 43.50$jUmweltbelastungen bkl Wright, Richard F. verfasserin aut Use of the Dynamic Model `MAGIC' to Predict Recovery Following Implementation of the Gothenburg Protocol 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2001 Abstract Reduction of sulphur deposition causesrecovery of acidified surface waters. Processes in thecatchment delay recovery. The acidification model MAGICwas applied to the Vikedal and Tovdal rivers in southernNorway. Response in water chemsitry is delayed by 10–20 yr. The delay is due to release of old sulphate atVikedal and cation exchange at Tovdal. Assuming that theGothenburg protocol is fully implemented by the year2010, much of the predicted increase of ANC will occur inthe next 10 yr with a levelling off by about 2040. Ifnitrogen leaching increases in the future, however,recovery of ANC will not be as rapid, nor as complete.Critical load for acidity calculated by steady-statemodels is confirmed by the MAGIC predictions. Futurerequirement for mitigation measures such as liming willdecrease in the future as acid deposition decreases. Bythe year 2046 the liming requirement will be reduced byabout 45% at Vikedal and 65% at Tovdal. One of the mainpurposes of the Norwegian national monitoring programmeis to provide documentation of changes in environmentalquality due to long-range transported air pollutants.Modelling applications such as this clearly show that thedata fill this purpose. Enthalten in Water, air & soil pollution / Focus Kluwer Academic Publishers, 2001 1(2001), 1-2 vom: Jan., Seite 455-482 (DE-627)330078380 (DE-600)2048822-1 (DE-576)515650463 0049-6979 nnns volume:1 year:2001 number:1-2 month:01 pages:455-482 https://doi.org/10.1023/A:1011516913618 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-FOR SSG-OLC-IBL GBV_ILN_4082 GBV_ILN_4219 43.50$jUmweltbelastungen VZ 106416782 (DE-625)106416782 AR 1 2001 1-2 01 455-482 |
allfieldsGer |
10.1023/A:1011516913618 doi (DE-627)OLC2062119682 (DE-He213)A:1011516913618-p DE-627 ger DE-627 rakwb eng 570 333.7 VZ 12 21 ssgn BIODIV DE-30 fid 43.50$jUmweltbelastungen bkl Wright, Richard F. verfasserin aut Use of the Dynamic Model `MAGIC' to Predict Recovery Following Implementation of the Gothenburg Protocol 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2001 Abstract Reduction of sulphur deposition causesrecovery of acidified surface waters. Processes in thecatchment delay recovery. The acidification model MAGICwas applied to the Vikedal and Tovdal rivers in southernNorway. Response in water chemsitry is delayed by 10–20 yr. The delay is due to release of old sulphate atVikedal and cation exchange at Tovdal. Assuming that theGothenburg protocol is fully implemented by the year2010, much of the predicted increase of ANC will occur inthe next 10 yr with a levelling off by about 2040. Ifnitrogen leaching increases in the future, however,recovery of ANC will not be as rapid, nor as complete.Critical load for acidity calculated by steady-statemodels is confirmed by the MAGIC predictions. Futurerequirement for mitigation measures such as liming willdecrease in the future as acid deposition decreases. Bythe year 2046 the liming requirement will be reduced byabout 45% at Vikedal and 65% at Tovdal. One of the mainpurposes of the Norwegian national monitoring programmeis to provide documentation of changes in environmentalquality due to long-range transported air pollutants.Modelling applications such as this clearly show that thedata fill this purpose. Enthalten in Water, air & soil pollution / Focus Kluwer Academic Publishers, 2001 1(2001), 1-2 vom: Jan., Seite 455-482 (DE-627)330078380 (DE-600)2048822-1 (DE-576)515650463 0049-6979 nnns volume:1 year:2001 number:1-2 month:01 pages:455-482 https://doi.org/10.1023/A:1011516913618 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-FOR SSG-OLC-IBL GBV_ILN_4082 GBV_ILN_4219 43.50$jUmweltbelastungen VZ 106416782 (DE-625)106416782 AR 1 2001 1-2 01 455-482 |
allfieldsSound |
10.1023/A:1011516913618 doi (DE-627)OLC2062119682 (DE-He213)A:1011516913618-p DE-627 ger DE-627 rakwb eng 570 333.7 VZ 12 21 ssgn BIODIV DE-30 fid 43.50$jUmweltbelastungen bkl Wright, Richard F. verfasserin aut Use of the Dynamic Model `MAGIC' to Predict Recovery Following Implementation of the Gothenburg Protocol 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2001 Abstract Reduction of sulphur deposition causesrecovery of acidified surface waters. Processes in thecatchment delay recovery. The acidification model MAGICwas applied to the Vikedal and Tovdal rivers in southernNorway. Response in water chemsitry is delayed by 10–20 yr. The delay is due to release of old sulphate atVikedal and cation exchange at Tovdal. Assuming that theGothenburg protocol is fully implemented by the year2010, much of the predicted increase of ANC will occur inthe next 10 yr with a levelling off by about 2040. Ifnitrogen leaching increases in the future, however,recovery of ANC will not be as rapid, nor as complete.Critical load for acidity calculated by steady-statemodels is confirmed by the MAGIC predictions. Futurerequirement for mitigation measures such as liming willdecrease in the future as acid deposition decreases. Bythe year 2046 the liming requirement will be reduced byabout 45% at Vikedal and 65% at Tovdal. One of the mainpurposes of the Norwegian national monitoring programmeis to provide documentation of changes in environmentalquality due to long-range transported air pollutants.Modelling applications such as this clearly show that thedata fill this purpose. Enthalten in Water, air & soil pollution / Focus Kluwer Academic Publishers, 2001 1(2001), 1-2 vom: Jan., Seite 455-482 (DE-627)330078380 (DE-600)2048822-1 (DE-576)515650463 0049-6979 nnns volume:1 year:2001 number:1-2 month:01 pages:455-482 https://doi.org/10.1023/A:1011516913618 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-FOR SSG-OLC-IBL GBV_ILN_4082 GBV_ILN_4219 43.50$jUmweltbelastungen VZ 106416782 (DE-625)106416782 AR 1 2001 1-2 01 455-482 |
language |
English |
source |
Enthalten in Water, air & soil pollution / Focus 1(2001), 1-2 vom: Jan., Seite 455-482 volume:1 year:2001 number:1-2 month:01 pages:455-482 |
sourceStr |
Enthalten in Water, air & soil pollution / Focus 1(2001), 1-2 vom: Jan., Seite 455-482 volume:1 year:2001 number:1-2 month:01 pages:455-482 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Water, air & soil pollution / Focus |
authorswithroles_txt_mv |
Wright, Richard F. @@aut@@ |
publishDateDaySort_date |
2001-01-01T00:00:00Z |
hierarchy_top_id |
330078380 |
dewey-sort |
3570 |
id |
OLC2062119682 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062119682</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504072617.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2001 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1011516913618</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062119682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1011516913618-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="a">21</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.50$jUmweltbelastungen</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wright, Richard F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Use of the Dynamic Model `MAGIC' to Predict Recovery Following Implementation of the Gothenburg Protocol</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Reduction of sulphur deposition causesrecovery of acidified surface waters. Processes in thecatchment delay recovery. The acidification model MAGICwas applied to the Vikedal and Tovdal rivers in southernNorway. Response in water chemsitry is delayed by 10–20 yr. The delay is due to release of old sulphate atVikedal and cation exchange at Tovdal. Assuming that theGothenburg protocol is fully implemented by the year2010, much of the predicted increase of ANC will occur inthe next 10 yr with a levelling off by about 2040. Ifnitrogen leaching increases in the future, however,recovery of ANC will not be as rapid, nor as complete.Critical load for acidity calculated by steady-statemodels is confirmed by the MAGIC predictions. Futurerequirement for mitigation measures such as liming willdecrease in the future as acid deposition decreases. Bythe year 2046 the liming requirement will be reduced byabout 45% at Vikedal and 65% at Tovdal. One of the mainpurposes of the Norwegian national monitoring programmeis to provide documentation of changes in environmentalquality due to long-range transported air pollutants.Modelling applications such as this clearly show that thedata fill this purpose.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water, air & soil pollution / Focus</subfield><subfield code="d">Kluwer Academic Publishers, 2001</subfield><subfield code="g">1(2001), 1-2 vom: Jan., Seite 455-482</subfield><subfield code="w">(DE-627)330078380</subfield><subfield code="w">(DE-600)2048822-1</subfield><subfield code="w">(DE-576)515650463</subfield><subfield code="x">0049-6979</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2001</subfield><subfield code="g">number:1-2</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:455-482</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1011516913618</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-IBL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.50$jUmweltbelastungen</subfield><subfield code="q">VZ</subfield><subfield code="0">106416782</subfield><subfield code="0">(DE-625)106416782</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2001</subfield><subfield code="e">1-2</subfield><subfield code="c">01</subfield><subfield code="h">455-482</subfield></datafield></record></collection>
|
author |
Wright, Richard F. |
spellingShingle |
Wright, Richard F. ddc 570 ssgn 12 fid BIODIV bkl 43.50$jUmweltbelastungen Use of the Dynamic Model `MAGIC' to Predict Recovery Following Implementation of the Gothenburg Protocol |
authorStr |
Wright, Richard F. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)330078380 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 333 - Economics of land & energy |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0049-6979 |
topic_title |
570 333.7 VZ 12 21 ssgn BIODIV DE-30 fid 43.50$jUmweltbelastungen bkl Use of the Dynamic Model `MAGIC' to Predict Recovery Following Implementation of the Gothenburg Protocol |
topic |
ddc 570 ssgn 12 fid BIODIV bkl 43.50$jUmweltbelastungen |
topic_unstemmed |
ddc 570 ssgn 12 fid BIODIV bkl 43.50$jUmweltbelastungen |
topic_browse |
ddc 570 ssgn 12 fid BIODIV bkl 43.50$jUmweltbelastungen |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Water, air & soil pollution / Focus |
hierarchy_parent_id |
330078380 |
dewey-tens |
570 - Life sciences; biology 330 - Economics |
hierarchy_top_title |
Water, air & soil pollution / Focus |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)330078380 (DE-600)2048822-1 (DE-576)515650463 |
title |
Use of the Dynamic Model `MAGIC' to Predict Recovery Following Implementation of the Gothenburg Protocol |
ctrlnum |
(DE-627)OLC2062119682 (DE-He213)A:1011516913618-p |
title_full |
Use of the Dynamic Model `MAGIC' to Predict Recovery Following Implementation of the Gothenburg Protocol |
author_sort |
Wright, Richard F. |
journal |
Water, air & soil pollution / Focus |
journalStr |
Water, air & soil pollution / Focus |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2001 |
contenttype_str_mv |
txt |
container_start_page |
455 |
author_browse |
Wright, Richard F. |
container_volume |
1 |
class |
570 333.7 VZ 12 21 ssgn BIODIV DE-30 fid 43.50$jUmweltbelastungen bkl |
format_se |
Aufsätze |
author-letter |
Wright, Richard F. |
doi_str_mv |
10.1023/A:1011516913618 |
normlink |
106416782 |
normlink_prefix_str_mv |
106416782 (DE-625)106416782 |
dewey-full |
570 333.7 |
title_sort |
use of the dynamic model `magic' to predict recovery following implementation of the gothenburg protocol |
title_auth |
Use of the Dynamic Model `MAGIC' to Predict Recovery Following Implementation of the Gothenburg Protocol |
abstract |
Abstract Reduction of sulphur deposition causesrecovery of acidified surface waters. Processes in thecatchment delay recovery. The acidification model MAGICwas applied to the Vikedal and Tovdal rivers in southernNorway. Response in water chemsitry is delayed by 10–20 yr. The delay is due to release of old sulphate atVikedal and cation exchange at Tovdal. Assuming that theGothenburg protocol is fully implemented by the year2010, much of the predicted increase of ANC will occur inthe next 10 yr with a levelling off by about 2040. Ifnitrogen leaching increases in the future, however,recovery of ANC will not be as rapid, nor as complete.Critical load for acidity calculated by steady-statemodels is confirmed by the MAGIC predictions. Futurerequirement for mitigation measures such as liming willdecrease in the future as acid deposition decreases. Bythe year 2046 the liming requirement will be reduced byabout 45% at Vikedal and 65% at Tovdal. One of the mainpurposes of the Norwegian national monitoring programmeis to provide documentation of changes in environmentalquality due to long-range transported air pollutants.Modelling applications such as this clearly show that thedata fill this purpose. © Kluwer Academic Publishers 2001 |
abstractGer |
Abstract Reduction of sulphur deposition causesrecovery of acidified surface waters. Processes in thecatchment delay recovery. The acidification model MAGICwas applied to the Vikedal and Tovdal rivers in southernNorway. Response in water chemsitry is delayed by 10–20 yr. The delay is due to release of old sulphate atVikedal and cation exchange at Tovdal. Assuming that theGothenburg protocol is fully implemented by the year2010, much of the predicted increase of ANC will occur inthe next 10 yr with a levelling off by about 2040. Ifnitrogen leaching increases in the future, however,recovery of ANC will not be as rapid, nor as complete.Critical load for acidity calculated by steady-statemodels is confirmed by the MAGIC predictions. Futurerequirement for mitigation measures such as liming willdecrease in the future as acid deposition decreases. Bythe year 2046 the liming requirement will be reduced byabout 45% at Vikedal and 65% at Tovdal. One of the mainpurposes of the Norwegian national monitoring programmeis to provide documentation of changes in environmentalquality due to long-range transported air pollutants.Modelling applications such as this clearly show that thedata fill this purpose. © Kluwer Academic Publishers 2001 |
abstract_unstemmed |
Abstract Reduction of sulphur deposition causesrecovery of acidified surface waters. Processes in thecatchment delay recovery. The acidification model MAGICwas applied to the Vikedal and Tovdal rivers in southernNorway. Response in water chemsitry is delayed by 10–20 yr. The delay is due to release of old sulphate atVikedal and cation exchange at Tovdal. Assuming that theGothenburg protocol is fully implemented by the year2010, much of the predicted increase of ANC will occur inthe next 10 yr with a levelling off by about 2040. Ifnitrogen leaching increases in the future, however,recovery of ANC will not be as rapid, nor as complete.Critical load for acidity calculated by steady-statemodels is confirmed by the MAGIC predictions. Futurerequirement for mitigation measures such as liming willdecrease in the future as acid deposition decreases. Bythe year 2046 the liming requirement will be reduced byabout 45% at Vikedal and 65% at Tovdal. One of the mainpurposes of the Norwegian national monitoring programmeis to provide documentation of changes in environmentalquality due to long-range transported air pollutants.Modelling applications such as this clearly show that thedata fill this purpose. © Kluwer Academic Publishers 2001 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-FOR SSG-OLC-IBL GBV_ILN_4082 GBV_ILN_4219 |
container_issue |
1-2 |
title_short |
Use of the Dynamic Model `MAGIC' to Predict Recovery Following Implementation of the Gothenburg Protocol |
url |
https://doi.org/10.1023/A:1011516913618 |
remote_bool |
false |
ppnlink |
330078380 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1011516913618 |
up_date |
2024-07-03T13:48:55.750Z |
_version_ |
1803565961840689153 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062119682</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504072617.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2001 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1011516913618</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062119682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1011516913618-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="a">21</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.50$jUmweltbelastungen</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wright, Richard F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Use of the Dynamic Model `MAGIC' to Predict Recovery Following Implementation of the Gothenburg Protocol</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Reduction of sulphur deposition causesrecovery of acidified surface waters. Processes in thecatchment delay recovery. The acidification model MAGICwas applied to the Vikedal and Tovdal rivers in southernNorway. Response in water chemsitry is delayed by 10–20 yr. The delay is due to release of old sulphate atVikedal and cation exchange at Tovdal. Assuming that theGothenburg protocol is fully implemented by the year2010, much of the predicted increase of ANC will occur inthe next 10 yr with a levelling off by about 2040. Ifnitrogen leaching increases in the future, however,recovery of ANC will not be as rapid, nor as complete.Critical load for acidity calculated by steady-statemodels is confirmed by the MAGIC predictions. Futurerequirement for mitigation measures such as liming willdecrease in the future as acid deposition decreases. Bythe year 2046 the liming requirement will be reduced byabout 45% at Vikedal and 65% at Tovdal. One of the mainpurposes of the Norwegian national monitoring programmeis to provide documentation of changes in environmentalquality due to long-range transported air pollutants.Modelling applications such as this clearly show that thedata fill this purpose.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water, air & soil pollution / Focus</subfield><subfield code="d">Kluwer Academic Publishers, 2001</subfield><subfield code="g">1(2001), 1-2 vom: Jan., Seite 455-482</subfield><subfield code="w">(DE-627)330078380</subfield><subfield code="w">(DE-600)2048822-1</subfield><subfield code="w">(DE-576)515650463</subfield><subfield code="x">0049-6979</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2001</subfield><subfield code="g">number:1-2</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:455-482</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1011516913618</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-IBL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.50$jUmweltbelastungen</subfield><subfield code="q">VZ</subfield><subfield code="0">106416782</subfield><subfield code="0">(DE-625)106416782</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2001</subfield><subfield code="e">1-2</subfield><subfield code="c">01</subfield><subfield code="h">455-482</subfield></datafield></record></collection>
|
score |
7.3993616 |