Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model
Abstract Load redistribution in smart load bearing mechanical structures can be used to reduce negative effects of damage or to prevent further damage if predefined load paths become unsuitable. Using controlled friction brakes in joints of kinematic links can be a suitable way to add dynamic functi...
Ausführliche Beschreibung
Autor*in: |
Gehb, C.M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Society for Experimental Mechanics, Inc 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Experimental techniques - Springer International Publishing, 1980, 44(2020), 3 vom: 21. Feb., Seite 369-382 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2020 ; number:3 ; day:21 ; month:02 ; pages:369-382 |
Links: |
---|
DOI / URN: |
10.1007/s40799-019-00355-7 |
---|
Katalog-ID: |
OLC2062420617 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2062420617 | ||
003 | DE-627 | ||
005 | 20230504150858.0 | ||
007 | tu | ||
008 | 200819s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s40799-019-00355-7 |2 doi | |
035 | |a (DE-627)OLC2062420617 | ||
035 | |a (DE-He213)s40799-019-00355-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 670 |a 690 |q VZ |
100 | 1 | |a Gehb, C.M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Society for Experimental Mechanics, Inc 2020 | ||
520 | |a Abstract Load redistribution in smart load bearing mechanical structures can be used to reduce negative effects of damage or to prevent further damage if predefined load paths become unsuitable. Using controlled friction brakes in joints of kinematic links can be a suitable way to add dynamic functionality for desired load path redistribution. Therefore, adequate friction models are needed to predict the friction behavior. Possible models that can be used to model friction vary from simple static to complex dynamic models with increasing sophistication in the representation of friction phenomena. The LuGre-model is a widely used dynamic friction model for friction compensation in high precision control systems. It needs six parameters for describing the friction behavior. These parameters are coupled to an unmeasurable internal state variable, therefore, parameter identification is challenging. Conventionally, optimization algorithms are used to identify the LuGre-parameters deterministically. In this paper, the parameter identification and calibration is formulated to achieve model prediction that is statistically consistent with the experimental data. By use of the $ R^{2} $ sensitivity analysis, the most influential parameters are selected for calibration. Subsequently, the Bayesian inference based calibration procedure using experimental data is performed. Uncertainty represented in former wide parameter ranges can be reduced and, thus, model prediction accuracy can be increased. | ||
650 | 4 | |a friction model | |
650 | 4 | |a Uncertainty quantification | |
650 | 4 | |a inference | |
650 | 4 | |a Parameter calibration | |
700 | 1 | |a Atamturktur, S. |4 aut | |
700 | 1 | |a Platz, R. |4 aut | |
700 | 1 | |a Melz, T. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Experimental techniques |d Springer International Publishing, 1980 |g 44(2020), 3 vom: 21. Feb., Seite 369-382 |w (DE-627)130750042 |w (DE-600)990656-3 |w (DE-576)016298004 |x 0732-8818 |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2020 |g number:3 |g day:21 |g month:02 |g pages:369-382 |
856 | 4 | 1 | |u https://doi.org/10.1007/s40799-019-00355-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2048 | ||
951 | |a AR | ||
952 | |d 44 |j 2020 |e 3 |b 21 |c 02 |h 369-382 |
author_variant |
c g cg s a sa r p rp t m tm |
---|---|
matchkey_str |
article:07328818:2020----::aeinneecbsdaaeeclbainfhl |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s40799-019-00355-7 doi (DE-627)OLC2062420617 (DE-He213)s40799-019-00355-7-p DE-627 ger DE-627 rakwb eng 530 670 690 VZ Gehb, C.M. verfasserin aut Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Society for Experimental Mechanics, Inc 2020 Abstract Load redistribution in smart load bearing mechanical structures can be used to reduce negative effects of damage or to prevent further damage if predefined load paths become unsuitable. Using controlled friction brakes in joints of kinematic links can be a suitable way to add dynamic functionality for desired load path redistribution. Therefore, adequate friction models are needed to predict the friction behavior. Possible models that can be used to model friction vary from simple static to complex dynamic models with increasing sophistication in the representation of friction phenomena. The LuGre-model is a widely used dynamic friction model for friction compensation in high precision control systems. It needs six parameters for describing the friction behavior. These parameters are coupled to an unmeasurable internal state variable, therefore, parameter identification is challenging. Conventionally, optimization algorithms are used to identify the LuGre-parameters deterministically. In this paper, the parameter identification and calibration is formulated to achieve model prediction that is statistically consistent with the experimental data. By use of the $ R^{2} $ sensitivity analysis, the most influential parameters are selected for calibration. Subsequently, the Bayesian inference based calibration procedure using experimental data is performed. Uncertainty represented in former wide parameter ranges can be reduced and, thus, model prediction accuracy can be increased. friction model Uncertainty quantification inference Parameter calibration Atamturktur, S. aut Platz, R. aut Melz, T. aut Enthalten in Experimental techniques Springer International Publishing, 1980 44(2020), 3 vom: 21. Feb., Seite 369-382 (DE-627)130750042 (DE-600)990656-3 (DE-576)016298004 0732-8818 nnns volume:44 year:2020 number:3 day:21 month:02 pages:369-382 https://doi.org/10.1007/s40799-019-00355-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2014 GBV_ILN_2048 AR 44 2020 3 21 02 369-382 |
spelling |
10.1007/s40799-019-00355-7 doi (DE-627)OLC2062420617 (DE-He213)s40799-019-00355-7-p DE-627 ger DE-627 rakwb eng 530 670 690 VZ Gehb, C.M. verfasserin aut Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Society for Experimental Mechanics, Inc 2020 Abstract Load redistribution in smart load bearing mechanical structures can be used to reduce negative effects of damage or to prevent further damage if predefined load paths become unsuitable. Using controlled friction brakes in joints of kinematic links can be a suitable way to add dynamic functionality for desired load path redistribution. Therefore, adequate friction models are needed to predict the friction behavior. Possible models that can be used to model friction vary from simple static to complex dynamic models with increasing sophistication in the representation of friction phenomena. The LuGre-model is a widely used dynamic friction model for friction compensation in high precision control systems. It needs six parameters for describing the friction behavior. These parameters are coupled to an unmeasurable internal state variable, therefore, parameter identification is challenging. Conventionally, optimization algorithms are used to identify the LuGre-parameters deterministically. In this paper, the parameter identification and calibration is formulated to achieve model prediction that is statistically consistent with the experimental data. By use of the $ R^{2} $ sensitivity analysis, the most influential parameters are selected for calibration. Subsequently, the Bayesian inference based calibration procedure using experimental data is performed. Uncertainty represented in former wide parameter ranges can be reduced and, thus, model prediction accuracy can be increased. friction model Uncertainty quantification inference Parameter calibration Atamturktur, S. aut Platz, R. aut Melz, T. aut Enthalten in Experimental techniques Springer International Publishing, 1980 44(2020), 3 vom: 21. Feb., Seite 369-382 (DE-627)130750042 (DE-600)990656-3 (DE-576)016298004 0732-8818 nnns volume:44 year:2020 number:3 day:21 month:02 pages:369-382 https://doi.org/10.1007/s40799-019-00355-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2014 GBV_ILN_2048 AR 44 2020 3 21 02 369-382 |
allfields_unstemmed |
10.1007/s40799-019-00355-7 doi (DE-627)OLC2062420617 (DE-He213)s40799-019-00355-7-p DE-627 ger DE-627 rakwb eng 530 670 690 VZ Gehb, C.M. verfasserin aut Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Society for Experimental Mechanics, Inc 2020 Abstract Load redistribution in smart load bearing mechanical structures can be used to reduce negative effects of damage or to prevent further damage if predefined load paths become unsuitable. Using controlled friction brakes in joints of kinematic links can be a suitable way to add dynamic functionality for desired load path redistribution. Therefore, adequate friction models are needed to predict the friction behavior. Possible models that can be used to model friction vary from simple static to complex dynamic models with increasing sophistication in the representation of friction phenomena. The LuGre-model is a widely used dynamic friction model for friction compensation in high precision control systems. It needs six parameters for describing the friction behavior. These parameters are coupled to an unmeasurable internal state variable, therefore, parameter identification is challenging. Conventionally, optimization algorithms are used to identify the LuGre-parameters deterministically. In this paper, the parameter identification and calibration is formulated to achieve model prediction that is statistically consistent with the experimental data. By use of the $ R^{2} $ sensitivity analysis, the most influential parameters are selected for calibration. Subsequently, the Bayesian inference based calibration procedure using experimental data is performed. Uncertainty represented in former wide parameter ranges can be reduced and, thus, model prediction accuracy can be increased. friction model Uncertainty quantification inference Parameter calibration Atamturktur, S. aut Platz, R. aut Melz, T. aut Enthalten in Experimental techniques Springer International Publishing, 1980 44(2020), 3 vom: 21. Feb., Seite 369-382 (DE-627)130750042 (DE-600)990656-3 (DE-576)016298004 0732-8818 nnns volume:44 year:2020 number:3 day:21 month:02 pages:369-382 https://doi.org/10.1007/s40799-019-00355-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2014 GBV_ILN_2048 AR 44 2020 3 21 02 369-382 |
allfieldsGer |
10.1007/s40799-019-00355-7 doi (DE-627)OLC2062420617 (DE-He213)s40799-019-00355-7-p DE-627 ger DE-627 rakwb eng 530 670 690 VZ Gehb, C.M. verfasserin aut Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Society for Experimental Mechanics, Inc 2020 Abstract Load redistribution in smart load bearing mechanical structures can be used to reduce negative effects of damage or to prevent further damage if predefined load paths become unsuitable. Using controlled friction brakes in joints of kinematic links can be a suitable way to add dynamic functionality for desired load path redistribution. Therefore, adequate friction models are needed to predict the friction behavior. Possible models that can be used to model friction vary from simple static to complex dynamic models with increasing sophistication in the representation of friction phenomena. The LuGre-model is a widely used dynamic friction model for friction compensation in high precision control systems. It needs six parameters for describing the friction behavior. These parameters are coupled to an unmeasurable internal state variable, therefore, parameter identification is challenging. Conventionally, optimization algorithms are used to identify the LuGre-parameters deterministically. In this paper, the parameter identification and calibration is formulated to achieve model prediction that is statistically consistent with the experimental data. By use of the $ R^{2} $ sensitivity analysis, the most influential parameters are selected for calibration. Subsequently, the Bayesian inference based calibration procedure using experimental data is performed. Uncertainty represented in former wide parameter ranges can be reduced and, thus, model prediction accuracy can be increased. friction model Uncertainty quantification inference Parameter calibration Atamturktur, S. aut Platz, R. aut Melz, T. aut Enthalten in Experimental techniques Springer International Publishing, 1980 44(2020), 3 vom: 21. Feb., Seite 369-382 (DE-627)130750042 (DE-600)990656-3 (DE-576)016298004 0732-8818 nnns volume:44 year:2020 number:3 day:21 month:02 pages:369-382 https://doi.org/10.1007/s40799-019-00355-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2014 GBV_ILN_2048 AR 44 2020 3 21 02 369-382 |
allfieldsSound |
10.1007/s40799-019-00355-7 doi (DE-627)OLC2062420617 (DE-He213)s40799-019-00355-7-p DE-627 ger DE-627 rakwb eng 530 670 690 VZ Gehb, C.M. verfasserin aut Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Society for Experimental Mechanics, Inc 2020 Abstract Load redistribution in smart load bearing mechanical structures can be used to reduce negative effects of damage or to prevent further damage if predefined load paths become unsuitable. Using controlled friction brakes in joints of kinematic links can be a suitable way to add dynamic functionality for desired load path redistribution. Therefore, adequate friction models are needed to predict the friction behavior. Possible models that can be used to model friction vary from simple static to complex dynamic models with increasing sophistication in the representation of friction phenomena. The LuGre-model is a widely used dynamic friction model for friction compensation in high precision control systems. It needs six parameters for describing the friction behavior. These parameters are coupled to an unmeasurable internal state variable, therefore, parameter identification is challenging. Conventionally, optimization algorithms are used to identify the LuGre-parameters deterministically. In this paper, the parameter identification and calibration is formulated to achieve model prediction that is statistically consistent with the experimental data. By use of the $ R^{2} $ sensitivity analysis, the most influential parameters are selected for calibration. Subsequently, the Bayesian inference based calibration procedure using experimental data is performed. Uncertainty represented in former wide parameter ranges can be reduced and, thus, model prediction accuracy can be increased. friction model Uncertainty quantification inference Parameter calibration Atamturktur, S. aut Platz, R. aut Melz, T. aut Enthalten in Experimental techniques Springer International Publishing, 1980 44(2020), 3 vom: 21. Feb., Seite 369-382 (DE-627)130750042 (DE-600)990656-3 (DE-576)016298004 0732-8818 nnns volume:44 year:2020 number:3 day:21 month:02 pages:369-382 https://doi.org/10.1007/s40799-019-00355-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2014 GBV_ILN_2048 AR 44 2020 3 21 02 369-382 |
language |
English |
source |
Enthalten in Experimental techniques 44(2020), 3 vom: 21. Feb., Seite 369-382 volume:44 year:2020 number:3 day:21 month:02 pages:369-382 |
sourceStr |
Enthalten in Experimental techniques 44(2020), 3 vom: 21. Feb., Seite 369-382 volume:44 year:2020 number:3 day:21 month:02 pages:369-382 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
friction model Uncertainty quantification inference Parameter calibration |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Experimental techniques |
authorswithroles_txt_mv |
Gehb, C.M. @@aut@@ Atamturktur, S. @@aut@@ Platz, R. @@aut@@ Melz, T. @@aut@@ |
publishDateDaySort_date |
2020-02-21T00:00:00Z |
hierarchy_top_id |
130750042 |
dewey-sort |
3530 |
id |
OLC2062420617 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062420617</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504150858.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40799-019-00355-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062420617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s40799-019-00355-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">670</subfield><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gehb, C.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Society for Experimental Mechanics, Inc 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Load redistribution in smart load bearing mechanical structures can be used to reduce negative effects of damage or to prevent further damage if predefined load paths become unsuitable. Using controlled friction brakes in joints of kinematic links can be a suitable way to add dynamic functionality for desired load path redistribution. Therefore, adequate friction models are needed to predict the friction behavior. Possible models that can be used to model friction vary from simple static to complex dynamic models with increasing sophistication in the representation of friction phenomena. The LuGre-model is a widely used dynamic friction model for friction compensation in high precision control systems. It needs six parameters for describing the friction behavior. These parameters are coupled to an unmeasurable internal state variable, therefore, parameter identification is challenging. Conventionally, optimization algorithms are used to identify the LuGre-parameters deterministically. In this paper, the parameter identification and calibration is formulated to achieve model prediction that is statistically consistent with the experimental data. By use of the $ R^{2} $ sensitivity analysis, the most influential parameters are selected for calibration. Subsequently, the Bayesian inference based calibration procedure using experimental data is performed. Uncertainty represented in former wide parameter ranges can be reduced and, thus, model prediction accuracy can be increased.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">friction model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty quantification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameter calibration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Atamturktur, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Platz, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Melz, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experimental techniques</subfield><subfield code="d">Springer International Publishing, 1980</subfield><subfield code="g">44(2020), 3 vom: 21. Feb., Seite 369-382</subfield><subfield code="w">(DE-627)130750042</subfield><subfield code="w">(DE-600)990656-3</subfield><subfield code="w">(DE-576)016298004</subfield><subfield code="x">0732-8818</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">day:21</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:369-382</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s40799-019-00355-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="b">21</subfield><subfield code="c">02</subfield><subfield code="h">369-382</subfield></datafield></record></collection>
|
author |
Gehb, C.M. |
spellingShingle |
Gehb, C.M. ddc 530 misc friction model misc Uncertainty quantification misc inference misc Parameter calibration Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model |
authorStr |
Gehb, C.M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130750042 |
format |
Article |
dewey-ones |
530 - Physics 670 - Manufacturing 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0732-8818 |
topic_title |
530 670 690 VZ Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model friction model Uncertainty quantification inference Parameter calibration |
topic |
ddc 530 misc friction model misc Uncertainty quantification misc inference misc Parameter calibration |
topic_unstemmed |
ddc 530 misc friction model misc Uncertainty quantification misc inference misc Parameter calibration |
topic_browse |
ddc 530 misc friction model misc Uncertainty quantification misc inference misc Parameter calibration |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Experimental techniques |
hierarchy_parent_id |
130750042 |
dewey-tens |
530 - Physics 670 - Manufacturing 690 - Building & construction |
hierarchy_top_title |
Experimental techniques |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130750042 (DE-600)990656-3 (DE-576)016298004 |
title |
Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model |
ctrlnum |
(DE-627)OLC2062420617 (DE-He213)s40799-019-00355-7-p |
title_full |
Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model |
author_sort |
Gehb, C.M. |
journal |
Experimental techniques |
journalStr |
Experimental techniques |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
369 |
author_browse |
Gehb, C.M. Atamturktur, S. Platz, R. Melz, T. |
container_volume |
44 |
class |
530 670 690 VZ |
format_se |
Aufsätze |
author-letter |
Gehb, C.M. |
doi_str_mv |
10.1007/s40799-019-00355-7 |
dewey-full |
530 670 690 |
title_sort |
bayesian inference based parameter calibration of the lugre-friction model |
title_auth |
Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model |
abstract |
Abstract Load redistribution in smart load bearing mechanical structures can be used to reduce negative effects of damage or to prevent further damage if predefined load paths become unsuitable. Using controlled friction brakes in joints of kinematic links can be a suitable way to add dynamic functionality for desired load path redistribution. Therefore, adequate friction models are needed to predict the friction behavior. Possible models that can be used to model friction vary from simple static to complex dynamic models with increasing sophistication in the representation of friction phenomena. The LuGre-model is a widely used dynamic friction model for friction compensation in high precision control systems. It needs six parameters for describing the friction behavior. These parameters are coupled to an unmeasurable internal state variable, therefore, parameter identification is challenging. Conventionally, optimization algorithms are used to identify the LuGre-parameters deterministically. In this paper, the parameter identification and calibration is formulated to achieve model prediction that is statistically consistent with the experimental data. By use of the $ R^{2} $ sensitivity analysis, the most influential parameters are selected for calibration. Subsequently, the Bayesian inference based calibration procedure using experimental data is performed. Uncertainty represented in former wide parameter ranges can be reduced and, thus, model prediction accuracy can be increased. © The Society for Experimental Mechanics, Inc 2020 |
abstractGer |
Abstract Load redistribution in smart load bearing mechanical structures can be used to reduce negative effects of damage or to prevent further damage if predefined load paths become unsuitable. Using controlled friction brakes in joints of kinematic links can be a suitable way to add dynamic functionality for desired load path redistribution. Therefore, adequate friction models are needed to predict the friction behavior. Possible models that can be used to model friction vary from simple static to complex dynamic models with increasing sophistication in the representation of friction phenomena. The LuGre-model is a widely used dynamic friction model for friction compensation in high precision control systems. It needs six parameters for describing the friction behavior. These parameters are coupled to an unmeasurable internal state variable, therefore, parameter identification is challenging. Conventionally, optimization algorithms are used to identify the LuGre-parameters deterministically. In this paper, the parameter identification and calibration is formulated to achieve model prediction that is statistically consistent with the experimental data. By use of the $ R^{2} $ sensitivity analysis, the most influential parameters are selected for calibration. Subsequently, the Bayesian inference based calibration procedure using experimental data is performed. Uncertainty represented in former wide parameter ranges can be reduced and, thus, model prediction accuracy can be increased. © The Society for Experimental Mechanics, Inc 2020 |
abstract_unstemmed |
Abstract Load redistribution in smart load bearing mechanical structures can be used to reduce negative effects of damage or to prevent further damage if predefined load paths become unsuitable. Using controlled friction brakes in joints of kinematic links can be a suitable way to add dynamic functionality for desired load path redistribution. Therefore, adequate friction models are needed to predict the friction behavior. Possible models that can be used to model friction vary from simple static to complex dynamic models with increasing sophistication in the representation of friction phenomena. The LuGre-model is a widely used dynamic friction model for friction compensation in high precision control systems. It needs six parameters for describing the friction behavior. These parameters are coupled to an unmeasurable internal state variable, therefore, parameter identification is challenging. Conventionally, optimization algorithms are used to identify the LuGre-parameters deterministically. In this paper, the parameter identification and calibration is formulated to achieve model prediction that is statistically consistent with the experimental data. By use of the $ R^{2} $ sensitivity analysis, the most influential parameters are selected for calibration. Subsequently, the Bayesian inference based calibration procedure using experimental data is performed. Uncertainty represented in former wide parameter ranges can be reduced and, thus, model prediction accuracy can be increased. © The Society for Experimental Mechanics, Inc 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2014 GBV_ILN_2048 |
container_issue |
3 |
title_short |
Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model |
url |
https://doi.org/10.1007/s40799-019-00355-7 |
remote_bool |
false |
author2 |
Atamturktur, S. Platz, R. Melz, T. |
author2Str |
Atamturktur, S. Platz, R. Melz, T. |
ppnlink |
130750042 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40799-019-00355-7 |
up_date |
2024-07-03T14:59:49.869Z |
_version_ |
1803570422611968001 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062420617</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504150858.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40799-019-00355-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062420617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s40799-019-00355-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">670</subfield><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gehb, C.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Society for Experimental Mechanics, Inc 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Load redistribution in smart load bearing mechanical structures can be used to reduce negative effects of damage or to prevent further damage if predefined load paths become unsuitable. Using controlled friction brakes in joints of kinematic links can be a suitable way to add dynamic functionality for desired load path redistribution. Therefore, adequate friction models are needed to predict the friction behavior. Possible models that can be used to model friction vary from simple static to complex dynamic models with increasing sophistication in the representation of friction phenomena. The LuGre-model is a widely used dynamic friction model for friction compensation in high precision control systems. It needs six parameters for describing the friction behavior. These parameters are coupled to an unmeasurable internal state variable, therefore, parameter identification is challenging. Conventionally, optimization algorithms are used to identify the LuGre-parameters deterministically. In this paper, the parameter identification and calibration is formulated to achieve model prediction that is statistically consistent with the experimental data. By use of the $ R^{2} $ sensitivity analysis, the most influential parameters are selected for calibration. Subsequently, the Bayesian inference based calibration procedure using experimental data is performed. Uncertainty represented in former wide parameter ranges can be reduced and, thus, model prediction accuracy can be increased.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">friction model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty quantification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameter calibration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Atamturktur, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Platz, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Melz, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experimental techniques</subfield><subfield code="d">Springer International Publishing, 1980</subfield><subfield code="g">44(2020), 3 vom: 21. Feb., Seite 369-382</subfield><subfield code="w">(DE-627)130750042</subfield><subfield code="w">(DE-600)990656-3</subfield><subfield code="w">(DE-576)016298004</subfield><subfield code="x">0732-8818</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">day:21</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:369-382</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s40799-019-00355-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="b">21</subfield><subfield code="c">02</subfield><subfield code="h">369-382</subfield></datafield></record></collection>
|
score |
7.4010057 |