Maximal regularity of type Lp for abstract parabolic Volterra equations
Abstract. We prove maximal regularity results of type Lp for abstract parabolic Volterra equations including problems with inhomogeneous boundary data. Our approach is purely operator theoretic. It uses the inversion of the convolution, the Dore-Venni theorem, the Mikhlin theorem in the operator-val...
Ausführliche Beschreibung
Autor*in: |
Zacher, Rico [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Anmerkung: |
© Birkhäuser Verlag, Basel 2005 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of evolution equations - Birkhäuser-Verlag, 2001, 5(2005), 1 vom: März, Seite 79-103 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2005 ; number:1 ; month:03 ; pages:79-103 |
Links: |
---|
DOI / URN: |
10.1007/s00028-004-0161-z |
---|
Katalog-ID: |
OLC2062451636 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2062451636 | ||
003 | DE-627 | ||
005 | 20230323113950.0 | ||
007 | tu | ||
008 | 200819s2005 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00028-004-0161-z |2 doi | |
035 | |a (DE-627)OLC2062451636 | ||
035 | |a (DE-He213)s00028-004-0161-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Zacher, Rico |e verfasserin |4 aut | |
245 | 1 | 0 | |a Maximal regularity of type Lp for abstract parabolic Volterra equations |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Birkhäuser Verlag, Basel 2005 | ||
520 | |a Abstract. We prove maximal regularity results of type Lp for abstract parabolic Volterra equations including problems with inhomogeneous boundary data. Our approach is purely operator theoretic. It uses the inversion of the convolution, the Dore-Venni theorem, the Mikhlin theorem in the operator-valued version, and real interpolation. Known results on Lp-regularity of abstract Cauchy problems and abstract parabolic pde’s with inhomogeneous boundary conditions are recovered. As an application we consider the heat equation of memory type with inhomogeneous boundary condition. | ||
773 | 0 | 8 | |i Enthalten in |t Journal of evolution equations |d Birkhäuser-Verlag, 2001 |g 5(2005), 1 vom: März, Seite 79-103 |w (DE-627)340078006 |w (DE-600)2065368-2 |w (DE-576)09660719X |x 1424-3199 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2005 |g number:1 |g month:03 |g pages:79-103 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00028-004-0161-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4325 | ||
951 | |a AR | ||
952 | |d 5 |j 2005 |e 1 |c 03 |h 79-103 |
author_variant |
r z rz |
---|---|
matchkey_str |
article:14243199:2005----::aiarglrtotplfrbtataaoi |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1007/s00028-004-0161-z doi (DE-627)OLC2062451636 (DE-He213)s00028-004-0161-z-p DE-627 ger DE-627 rakwb eng 510 VZ Zacher, Rico verfasserin aut Maximal regularity of type Lp for abstract parabolic Volterra equations 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2005 Abstract. We prove maximal regularity results of type Lp for abstract parabolic Volterra equations including problems with inhomogeneous boundary data. Our approach is purely operator theoretic. It uses the inversion of the convolution, the Dore-Venni theorem, the Mikhlin theorem in the operator-valued version, and real interpolation. Known results on Lp-regularity of abstract Cauchy problems and abstract parabolic pde’s with inhomogeneous boundary conditions are recovered. As an application we consider the heat equation of memory type with inhomogeneous boundary condition. Enthalten in Journal of evolution equations Birkhäuser-Verlag, 2001 5(2005), 1 vom: März, Seite 79-103 (DE-627)340078006 (DE-600)2065368-2 (DE-576)09660719X 1424-3199 nnns volume:5 year:2005 number:1 month:03 pages:79-103 https://doi.org/10.1007/s00028-004-0161-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4325 AR 5 2005 1 03 79-103 |
spelling |
10.1007/s00028-004-0161-z doi (DE-627)OLC2062451636 (DE-He213)s00028-004-0161-z-p DE-627 ger DE-627 rakwb eng 510 VZ Zacher, Rico verfasserin aut Maximal regularity of type Lp for abstract parabolic Volterra equations 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2005 Abstract. We prove maximal regularity results of type Lp for abstract parabolic Volterra equations including problems with inhomogeneous boundary data. Our approach is purely operator theoretic. It uses the inversion of the convolution, the Dore-Venni theorem, the Mikhlin theorem in the operator-valued version, and real interpolation. Known results on Lp-regularity of abstract Cauchy problems and abstract parabolic pde’s with inhomogeneous boundary conditions are recovered. As an application we consider the heat equation of memory type with inhomogeneous boundary condition. Enthalten in Journal of evolution equations Birkhäuser-Verlag, 2001 5(2005), 1 vom: März, Seite 79-103 (DE-627)340078006 (DE-600)2065368-2 (DE-576)09660719X 1424-3199 nnns volume:5 year:2005 number:1 month:03 pages:79-103 https://doi.org/10.1007/s00028-004-0161-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4325 AR 5 2005 1 03 79-103 |
allfields_unstemmed |
10.1007/s00028-004-0161-z doi (DE-627)OLC2062451636 (DE-He213)s00028-004-0161-z-p DE-627 ger DE-627 rakwb eng 510 VZ Zacher, Rico verfasserin aut Maximal regularity of type Lp for abstract parabolic Volterra equations 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2005 Abstract. We prove maximal regularity results of type Lp for abstract parabolic Volterra equations including problems with inhomogeneous boundary data. Our approach is purely operator theoretic. It uses the inversion of the convolution, the Dore-Venni theorem, the Mikhlin theorem in the operator-valued version, and real interpolation. Known results on Lp-regularity of abstract Cauchy problems and abstract parabolic pde’s with inhomogeneous boundary conditions are recovered. As an application we consider the heat equation of memory type with inhomogeneous boundary condition. Enthalten in Journal of evolution equations Birkhäuser-Verlag, 2001 5(2005), 1 vom: März, Seite 79-103 (DE-627)340078006 (DE-600)2065368-2 (DE-576)09660719X 1424-3199 nnns volume:5 year:2005 number:1 month:03 pages:79-103 https://doi.org/10.1007/s00028-004-0161-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4325 AR 5 2005 1 03 79-103 |
allfieldsGer |
10.1007/s00028-004-0161-z doi (DE-627)OLC2062451636 (DE-He213)s00028-004-0161-z-p DE-627 ger DE-627 rakwb eng 510 VZ Zacher, Rico verfasserin aut Maximal regularity of type Lp for abstract parabolic Volterra equations 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2005 Abstract. We prove maximal regularity results of type Lp for abstract parabolic Volterra equations including problems with inhomogeneous boundary data. Our approach is purely operator theoretic. It uses the inversion of the convolution, the Dore-Venni theorem, the Mikhlin theorem in the operator-valued version, and real interpolation. Known results on Lp-regularity of abstract Cauchy problems and abstract parabolic pde’s with inhomogeneous boundary conditions are recovered. As an application we consider the heat equation of memory type with inhomogeneous boundary condition. Enthalten in Journal of evolution equations Birkhäuser-Verlag, 2001 5(2005), 1 vom: März, Seite 79-103 (DE-627)340078006 (DE-600)2065368-2 (DE-576)09660719X 1424-3199 nnns volume:5 year:2005 number:1 month:03 pages:79-103 https://doi.org/10.1007/s00028-004-0161-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4325 AR 5 2005 1 03 79-103 |
allfieldsSound |
10.1007/s00028-004-0161-z doi (DE-627)OLC2062451636 (DE-He213)s00028-004-0161-z-p DE-627 ger DE-627 rakwb eng 510 VZ Zacher, Rico verfasserin aut Maximal regularity of type Lp for abstract parabolic Volterra equations 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2005 Abstract. We prove maximal regularity results of type Lp for abstract parabolic Volterra equations including problems with inhomogeneous boundary data. Our approach is purely operator theoretic. It uses the inversion of the convolution, the Dore-Venni theorem, the Mikhlin theorem in the operator-valued version, and real interpolation. Known results on Lp-regularity of abstract Cauchy problems and abstract parabolic pde’s with inhomogeneous boundary conditions are recovered. As an application we consider the heat equation of memory type with inhomogeneous boundary condition. Enthalten in Journal of evolution equations Birkhäuser-Verlag, 2001 5(2005), 1 vom: März, Seite 79-103 (DE-627)340078006 (DE-600)2065368-2 (DE-576)09660719X 1424-3199 nnns volume:5 year:2005 number:1 month:03 pages:79-103 https://doi.org/10.1007/s00028-004-0161-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4325 AR 5 2005 1 03 79-103 |
language |
English |
source |
Enthalten in Journal of evolution equations 5(2005), 1 vom: März, Seite 79-103 volume:5 year:2005 number:1 month:03 pages:79-103 |
sourceStr |
Enthalten in Journal of evolution equations 5(2005), 1 vom: März, Seite 79-103 volume:5 year:2005 number:1 month:03 pages:79-103 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of evolution equations |
authorswithroles_txt_mv |
Zacher, Rico @@aut@@ |
publishDateDaySort_date |
2005-03-01T00:00:00Z |
hierarchy_top_id |
340078006 |
dewey-sort |
3510 |
id |
OLC2062451636 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062451636</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113950.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00028-004-0161-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062451636</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00028-004-0161-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zacher, Rico</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maximal regularity of type Lp for abstract parabolic Volterra equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag, Basel 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. We prove maximal regularity results of type Lp for abstract parabolic Volterra equations including problems with inhomogeneous boundary data. Our approach is purely operator theoretic. It uses the inversion of the convolution, the Dore-Venni theorem, the Mikhlin theorem in the operator-valued version, and real interpolation. Known results on Lp-regularity of abstract Cauchy problems and abstract parabolic pde’s with inhomogeneous boundary conditions are recovered. As an application we consider the heat equation of memory type with inhomogeneous boundary condition.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of evolution equations</subfield><subfield code="d">Birkhäuser-Verlag, 2001</subfield><subfield code="g">5(2005), 1 vom: März, Seite 79-103</subfield><subfield code="w">(DE-627)340078006</subfield><subfield code="w">(DE-600)2065368-2</subfield><subfield code="w">(DE-576)09660719X</subfield><subfield code="x">1424-3199</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:79-103</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00028-004-0161-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2005</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">79-103</subfield></datafield></record></collection>
|
author |
Zacher, Rico |
spellingShingle |
Zacher, Rico ddc 510 Maximal regularity of type Lp for abstract parabolic Volterra equations |
authorStr |
Zacher, Rico |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)340078006 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1424-3199 |
topic_title |
510 VZ Maximal regularity of type Lp for abstract parabolic Volterra equations |
topic |
ddc 510 |
topic_unstemmed |
ddc 510 |
topic_browse |
ddc 510 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of evolution equations |
hierarchy_parent_id |
340078006 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of evolution equations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)340078006 (DE-600)2065368-2 (DE-576)09660719X |
title |
Maximal regularity of type Lp for abstract parabolic Volterra equations |
ctrlnum |
(DE-627)OLC2062451636 (DE-He213)s00028-004-0161-z-p |
title_full |
Maximal regularity of type Lp for abstract parabolic Volterra equations |
author_sort |
Zacher, Rico |
journal |
Journal of evolution equations |
journalStr |
Journal of evolution equations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
container_start_page |
79 |
author_browse |
Zacher, Rico |
container_volume |
5 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Zacher, Rico |
doi_str_mv |
10.1007/s00028-004-0161-z |
dewey-full |
510 |
title_sort |
maximal regularity of type lp for abstract parabolic volterra equations |
title_auth |
Maximal regularity of type Lp for abstract parabolic Volterra equations |
abstract |
Abstract. We prove maximal regularity results of type Lp for abstract parabolic Volterra equations including problems with inhomogeneous boundary data. Our approach is purely operator theoretic. It uses the inversion of the convolution, the Dore-Venni theorem, the Mikhlin theorem in the operator-valued version, and real interpolation. Known results on Lp-regularity of abstract Cauchy problems and abstract parabolic pde’s with inhomogeneous boundary conditions are recovered. As an application we consider the heat equation of memory type with inhomogeneous boundary condition. © Birkhäuser Verlag, Basel 2005 |
abstractGer |
Abstract. We prove maximal regularity results of type Lp for abstract parabolic Volterra equations including problems with inhomogeneous boundary data. Our approach is purely operator theoretic. It uses the inversion of the convolution, the Dore-Venni theorem, the Mikhlin theorem in the operator-valued version, and real interpolation. Known results on Lp-regularity of abstract Cauchy problems and abstract parabolic pde’s with inhomogeneous boundary conditions are recovered. As an application we consider the heat equation of memory type with inhomogeneous boundary condition. © Birkhäuser Verlag, Basel 2005 |
abstract_unstemmed |
Abstract. We prove maximal regularity results of type Lp for abstract parabolic Volterra equations including problems with inhomogeneous boundary data. Our approach is purely operator theoretic. It uses the inversion of the convolution, the Dore-Venni theorem, the Mikhlin theorem in the operator-valued version, and real interpolation. Known results on Lp-regularity of abstract Cauchy problems and abstract parabolic pde’s with inhomogeneous boundary conditions are recovered. As an application we consider the heat equation of memory type with inhomogeneous boundary condition. © Birkhäuser Verlag, Basel 2005 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4325 |
container_issue |
1 |
title_short |
Maximal regularity of type Lp for abstract parabolic Volterra equations |
url |
https://doi.org/10.1007/s00028-004-0161-z |
remote_bool |
false |
ppnlink |
340078006 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00028-004-0161-z |
up_date |
2024-07-03T15:07:27.012Z |
_version_ |
1803570901955903488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062451636</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113950.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00028-004-0161-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062451636</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00028-004-0161-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zacher, Rico</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maximal regularity of type Lp for abstract parabolic Volterra equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag, Basel 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. We prove maximal regularity results of type Lp for abstract parabolic Volterra equations including problems with inhomogeneous boundary data. Our approach is purely operator theoretic. It uses the inversion of the convolution, the Dore-Venni theorem, the Mikhlin theorem in the operator-valued version, and real interpolation. Known results on Lp-regularity of abstract Cauchy problems and abstract parabolic pde’s with inhomogeneous boundary conditions are recovered. As an application we consider the heat equation of memory type with inhomogeneous boundary condition.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of evolution equations</subfield><subfield code="d">Birkhäuser-Verlag, 2001</subfield><subfield code="g">5(2005), 1 vom: März, Seite 79-103</subfield><subfield code="w">(DE-627)340078006</subfield><subfield code="w">(DE-600)2065368-2</subfield><subfield code="w">(DE-576)09660719X</subfield><subfield code="x">1424-3199</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:79-103</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00028-004-0161-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2005</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">79-103</subfield></datafield></record></collection>
|
score |
7.401106 |