A viability approach to the inverse set-valued map theorem
Abstract. The purpose of this paper is to characterize by means of viability tools the pseudo-lipschitzianity property of a set-valued map F in a neighborhood of a point of its graph in terms of derivatives of this set-valued map F in a neighborhood of a point of its graph, instead of using the tran...
Ausführliche Beschreibung
Autor*in: |
Aubin, Jean-Pierre [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2006 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Birkhäuser Verlag, Basel 2006 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of evolution equations - Birkhäuser-Verlag, 2001, 6(2006), 3 vom: Aug., Seite 419-432 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2006 ; number:3 ; month:08 ; pages:419-432 |
Links: |
---|
DOI / URN: |
10.1007/s00028-006-0258-7 |
---|
Katalog-ID: |
OLC2062452055 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2062452055 | ||
003 | DE-627 | ||
005 | 20230323113953.0 | ||
007 | tu | ||
008 | 200819s2006 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00028-006-0258-7 |2 doi | |
035 | |a (DE-627)OLC2062452055 | ||
035 | |a (DE-He213)s00028-006-0258-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Aubin, Jean-Pierre |e verfasserin |4 aut | |
245 | 1 | 0 | |a A viability approach to the inverse set-valued map theorem |
264 | 1 | |c 2006 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Birkhäuser Verlag, Basel 2006 | ||
520 | |a Abstract. The purpose of this paper is to characterize by means of viability tools the pseudo-lipschitzianity property of a set-valued map F in a neighborhood of a point of its graph in terms of derivatives of this set-valued map F in a neighborhood of a point of its graph, instead of using the transposes of the derivatives. On the way, we relate these properties to the calmness index of a set-valued map, an extensions of Clarke’s calmness of a function, as well as Doyen’s Lipschitz kernel of a set-valued map, which is the largest Lipschitz submap. | ||
650 | 4 | |a Differential Inclusion | |
650 | 4 | |a Viability Approach | |
650 | 4 | |a Closed Convex Cone | |
650 | 4 | |a Inverse Function Theorem | |
650 | 4 | |a Close Graph Theorem | |
773 | 0 | 8 | |i Enthalten in |t Journal of evolution equations |d Birkhäuser-Verlag, 2001 |g 6(2006), 3 vom: Aug., Seite 419-432 |w (DE-627)340078006 |w (DE-600)2065368-2 |w (DE-576)09660719X |x 1424-3199 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2006 |g number:3 |g month:08 |g pages:419-432 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00028-006-0258-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4325 | ||
951 | |a AR | ||
952 | |d 6 |j 2006 |e 3 |c 08 |h 419-432 |
author_variant |
j p a jpa |
---|---|
matchkey_str |
article:14243199:2006----::vaiiyprahohivreevl |
hierarchy_sort_str |
2006 |
publishDate |
2006 |
allfields |
10.1007/s00028-006-0258-7 doi (DE-627)OLC2062452055 (DE-He213)s00028-006-0258-7-p DE-627 ger DE-627 rakwb eng 510 VZ Aubin, Jean-Pierre verfasserin aut A viability approach to the inverse set-valued map theorem 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2006 Abstract. The purpose of this paper is to characterize by means of viability tools the pseudo-lipschitzianity property of a set-valued map F in a neighborhood of a point of its graph in terms of derivatives of this set-valued map F in a neighborhood of a point of its graph, instead of using the transposes of the derivatives. On the way, we relate these properties to the calmness index of a set-valued map, an extensions of Clarke’s calmness of a function, as well as Doyen’s Lipschitz kernel of a set-valued map, which is the largest Lipschitz submap. Differential Inclusion Viability Approach Closed Convex Cone Inverse Function Theorem Close Graph Theorem Enthalten in Journal of evolution equations Birkhäuser-Verlag, 2001 6(2006), 3 vom: Aug., Seite 419-432 (DE-627)340078006 (DE-600)2065368-2 (DE-576)09660719X 1424-3199 nnns volume:6 year:2006 number:3 month:08 pages:419-432 https://doi.org/10.1007/s00028-006-0258-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4325 AR 6 2006 3 08 419-432 |
spelling |
10.1007/s00028-006-0258-7 doi (DE-627)OLC2062452055 (DE-He213)s00028-006-0258-7-p DE-627 ger DE-627 rakwb eng 510 VZ Aubin, Jean-Pierre verfasserin aut A viability approach to the inverse set-valued map theorem 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2006 Abstract. The purpose of this paper is to characterize by means of viability tools the pseudo-lipschitzianity property of a set-valued map F in a neighborhood of a point of its graph in terms of derivatives of this set-valued map F in a neighborhood of a point of its graph, instead of using the transposes of the derivatives. On the way, we relate these properties to the calmness index of a set-valued map, an extensions of Clarke’s calmness of a function, as well as Doyen’s Lipschitz kernel of a set-valued map, which is the largest Lipschitz submap. Differential Inclusion Viability Approach Closed Convex Cone Inverse Function Theorem Close Graph Theorem Enthalten in Journal of evolution equations Birkhäuser-Verlag, 2001 6(2006), 3 vom: Aug., Seite 419-432 (DE-627)340078006 (DE-600)2065368-2 (DE-576)09660719X 1424-3199 nnns volume:6 year:2006 number:3 month:08 pages:419-432 https://doi.org/10.1007/s00028-006-0258-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4325 AR 6 2006 3 08 419-432 |
allfields_unstemmed |
10.1007/s00028-006-0258-7 doi (DE-627)OLC2062452055 (DE-He213)s00028-006-0258-7-p DE-627 ger DE-627 rakwb eng 510 VZ Aubin, Jean-Pierre verfasserin aut A viability approach to the inverse set-valued map theorem 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2006 Abstract. The purpose of this paper is to characterize by means of viability tools the pseudo-lipschitzianity property of a set-valued map F in a neighborhood of a point of its graph in terms of derivatives of this set-valued map F in a neighborhood of a point of its graph, instead of using the transposes of the derivatives. On the way, we relate these properties to the calmness index of a set-valued map, an extensions of Clarke’s calmness of a function, as well as Doyen’s Lipschitz kernel of a set-valued map, which is the largest Lipschitz submap. Differential Inclusion Viability Approach Closed Convex Cone Inverse Function Theorem Close Graph Theorem Enthalten in Journal of evolution equations Birkhäuser-Verlag, 2001 6(2006), 3 vom: Aug., Seite 419-432 (DE-627)340078006 (DE-600)2065368-2 (DE-576)09660719X 1424-3199 nnns volume:6 year:2006 number:3 month:08 pages:419-432 https://doi.org/10.1007/s00028-006-0258-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4325 AR 6 2006 3 08 419-432 |
allfieldsGer |
10.1007/s00028-006-0258-7 doi (DE-627)OLC2062452055 (DE-He213)s00028-006-0258-7-p DE-627 ger DE-627 rakwb eng 510 VZ Aubin, Jean-Pierre verfasserin aut A viability approach to the inverse set-valued map theorem 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2006 Abstract. The purpose of this paper is to characterize by means of viability tools the pseudo-lipschitzianity property of a set-valued map F in a neighborhood of a point of its graph in terms of derivatives of this set-valued map F in a neighborhood of a point of its graph, instead of using the transposes of the derivatives. On the way, we relate these properties to the calmness index of a set-valued map, an extensions of Clarke’s calmness of a function, as well as Doyen’s Lipschitz kernel of a set-valued map, which is the largest Lipschitz submap. Differential Inclusion Viability Approach Closed Convex Cone Inverse Function Theorem Close Graph Theorem Enthalten in Journal of evolution equations Birkhäuser-Verlag, 2001 6(2006), 3 vom: Aug., Seite 419-432 (DE-627)340078006 (DE-600)2065368-2 (DE-576)09660719X 1424-3199 nnns volume:6 year:2006 number:3 month:08 pages:419-432 https://doi.org/10.1007/s00028-006-0258-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4325 AR 6 2006 3 08 419-432 |
allfieldsSound |
10.1007/s00028-006-0258-7 doi (DE-627)OLC2062452055 (DE-He213)s00028-006-0258-7-p DE-627 ger DE-627 rakwb eng 510 VZ Aubin, Jean-Pierre verfasserin aut A viability approach to the inverse set-valued map theorem 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2006 Abstract. The purpose of this paper is to characterize by means of viability tools the pseudo-lipschitzianity property of a set-valued map F in a neighborhood of a point of its graph in terms of derivatives of this set-valued map F in a neighborhood of a point of its graph, instead of using the transposes of the derivatives. On the way, we relate these properties to the calmness index of a set-valued map, an extensions of Clarke’s calmness of a function, as well as Doyen’s Lipschitz kernel of a set-valued map, which is the largest Lipschitz submap. Differential Inclusion Viability Approach Closed Convex Cone Inverse Function Theorem Close Graph Theorem Enthalten in Journal of evolution equations Birkhäuser-Verlag, 2001 6(2006), 3 vom: Aug., Seite 419-432 (DE-627)340078006 (DE-600)2065368-2 (DE-576)09660719X 1424-3199 nnns volume:6 year:2006 number:3 month:08 pages:419-432 https://doi.org/10.1007/s00028-006-0258-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4325 AR 6 2006 3 08 419-432 |
language |
English |
source |
Enthalten in Journal of evolution equations 6(2006), 3 vom: Aug., Seite 419-432 volume:6 year:2006 number:3 month:08 pages:419-432 |
sourceStr |
Enthalten in Journal of evolution equations 6(2006), 3 vom: Aug., Seite 419-432 volume:6 year:2006 number:3 month:08 pages:419-432 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Differential Inclusion Viability Approach Closed Convex Cone Inverse Function Theorem Close Graph Theorem |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of evolution equations |
authorswithroles_txt_mv |
Aubin, Jean-Pierre @@aut@@ |
publishDateDaySort_date |
2006-08-01T00:00:00Z |
hierarchy_top_id |
340078006 |
dewey-sort |
3510 |
id |
OLC2062452055 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062452055</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113953.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00028-006-0258-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062452055</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00028-006-0258-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aubin, Jean-Pierre</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A viability approach to the inverse set-valued map theorem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag, Basel 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. The purpose of this paper is to characterize by means of viability tools the pseudo-lipschitzianity property of a set-valued map F in a neighborhood of a point of its graph in terms of derivatives of this set-valued map F in a neighborhood of a point of its graph, instead of using the transposes of the derivatives. On the way, we relate these properties to the calmness index of a set-valued map, an extensions of Clarke’s calmness of a function, as well as Doyen’s Lipschitz kernel of a set-valued map, which is the largest Lipschitz submap.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Inclusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viability Approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Closed Convex Cone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse Function Theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Close Graph Theorem</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of evolution equations</subfield><subfield code="d">Birkhäuser-Verlag, 2001</subfield><subfield code="g">6(2006), 3 vom: Aug., Seite 419-432</subfield><subfield code="w">(DE-627)340078006</subfield><subfield code="w">(DE-600)2065368-2</subfield><subfield code="w">(DE-576)09660719X</subfield><subfield code="x">1424-3199</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:3</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:419-432</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00028-006-0258-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2006</subfield><subfield code="e">3</subfield><subfield code="c">08</subfield><subfield code="h">419-432</subfield></datafield></record></collection>
|
author |
Aubin, Jean-Pierre |
spellingShingle |
Aubin, Jean-Pierre ddc 510 misc Differential Inclusion misc Viability Approach misc Closed Convex Cone misc Inverse Function Theorem misc Close Graph Theorem A viability approach to the inverse set-valued map theorem |
authorStr |
Aubin, Jean-Pierre |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)340078006 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1424-3199 |
topic_title |
510 VZ A viability approach to the inverse set-valued map theorem Differential Inclusion Viability Approach Closed Convex Cone Inverse Function Theorem Close Graph Theorem |
topic |
ddc 510 misc Differential Inclusion misc Viability Approach misc Closed Convex Cone misc Inverse Function Theorem misc Close Graph Theorem |
topic_unstemmed |
ddc 510 misc Differential Inclusion misc Viability Approach misc Closed Convex Cone misc Inverse Function Theorem misc Close Graph Theorem |
topic_browse |
ddc 510 misc Differential Inclusion misc Viability Approach misc Closed Convex Cone misc Inverse Function Theorem misc Close Graph Theorem |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of evolution equations |
hierarchy_parent_id |
340078006 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of evolution equations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)340078006 (DE-600)2065368-2 (DE-576)09660719X |
title |
A viability approach to the inverse set-valued map theorem |
ctrlnum |
(DE-627)OLC2062452055 (DE-He213)s00028-006-0258-7-p |
title_full |
A viability approach to the inverse set-valued map theorem |
author_sort |
Aubin, Jean-Pierre |
journal |
Journal of evolution equations |
journalStr |
Journal of evolution equations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2006 |
contenttype_str_mv |
txt |
container_start_page |
419 |
author_browse |
Aubin, Jean-Pierre |
container_volume |
6 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Aubin, Jean-Pierre |
doi_str_mv |
10.1007/s00028-006-0258-7 |
dewey-full |
510 |
title_sort |
a viability approach to the inverse set-valued map theorem |
title_auth |
A viability approach to the inverse set-valued map theorem |
abstract |
Abstract. The purpose of this paper is to characterize by means of viability tools the pseudo-lipschitzianity property of a set-valued map F in a neighborhood of a point of its graph in terms of derivatives of this set-valued map F in a neighborhood of a point of its graph, instead of using the transposes of the derivatives. On the way, we relate these properties to the calmness index of a set-valued map, an extensions of Clarke’s calmness of a function, as well as Doyen’s Lipschitz kernel of a set-valued map, which is the largest Lipschitz submap. © Birkhäuser Verlag, Basel 2006 |
abstractGer |
Abstract. The purpose of this paper is to characterize by means of viability tools the pseudo-lipschitzianity property of a set-valued map F in a neighborhood of a point of its graph in terms of derivatives of this set-valued map F in a neighborhood of a point of its graph, instead of using the transposes of the derivatives. On the way, we relate these properties to the calmness index of a set-valued map, an extensions of Clarke’s calmness of a function, as well as Doyen’s Lipschitz kernel of a set-valued map, which is the largest Lipschitz submap. © Birkhäuser Verlag, Basel 2006 |
abstract_unstemmed |
Abstract. The purpose of this paper is to characterize by means of viability tools the pseudo-lipschitzianity property of a set-valued map F in a neighborhood of a point of its graph in terms of derivatives of this set-valued map F in a neighborhood of a point of its graph, instead of using the transposes of the derivatives. On the way, we relate these properties to the calmness index of a set-valued map, an extensions of Clarke’s calmness of a function, as well as Doyen’s Lipschitz kernel of a set-valued map, which is the largest Lipschitz submap. © Birkhäuser Verlag, Basel 2006 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4277 GBV_ILN_4325 |
container_issue |
3 |
title_short |
A viability approach to the inverse set-valued map theorem |
url |
https://doi.org/10.1007/s00028-006-0258-7 |
remote_bool |
false |
ppnlink |
340078006 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00028-006-0258-7 |
up_date |
2024-07-03T15:07:31.333Z |
_version_ |
1803570906486800384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062452055</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323113953.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00028-006-0258-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062452055</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00028-006-0258-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aubin, Jean-Pierre</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A viability approach to the inverse set-valued map theorem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag, Basel 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. The purpose of this paper is to characterize by means of viability tools the pseudo-lipschitzianity property of a set-valued map F in a neighborhood of a point of its graph in terms of derivatives of this set-valued map F in a neighborhood of a point of its graph, instead of using the transposes of the derivatives. On the way, we relate these properties to the calmness index of a set-valued map, an extensions of Clarke’s calmness of a function, as well as Doyen’s Lipschitz kernel of a set-valued map, which is the largest Lipschitz submap.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Inclusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viability Approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Closed Convex Cone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse Function Theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Close Graph Theorem</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of evolution equations</subfield><subfield code="d">Birkhäuser-Verlag, 2001</subfield><subfield code="g">6(2006), 3 vom: Aug., Seite 419-432</subfield><subfield code="w">(DE-627)340078006</subfield><subfield code="w">(DE-600)2065368-2</subfield><subfield code="w">(DE-576)09660719X</subfield><subfield code="x">1424-3199</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:3</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:419-432</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00028-006-0258-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2006</subfield><subfield code="e">3</subfield><subfield code="c">08</subfield><subfield code="h">419-432</subfield></datafield></record></collection>
|
score |
7.4016523 |