Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample
runt pruning , a new clustering method that attempts to find modes of a density by analyzing the minimal spanning tree of a sample. The method exploits the connection between the minimal spanning tree and nearest neighbor density (e.g. normal mixture) or about the geometric shapes of the clusters, a...
Ausführliche Beschreibung
Autor*in: |
Stuetzle, Werner [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2003 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag New York Inc. 2003 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of classification - Springer-Verlag, 1984, 20(2003), 1 vom: Mai, Seite 025-047 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2003 ; number:1 ; month:05 ; pages:025-047 |
Links: |
---|
DOI / URN: |
10.1007/s00357-003-0004-6 |
---|
Katalog-ID: |
OLC2062461860 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2062461860 | ||
003 | DE-627 | ||
005 | 20230331141131.0 | ||
007 | tu | ||
008 | 200819s2003 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00357-003-0004-6 |2 doi | |
035 | |a (DE-627)OLC2062461860 | ||
035 | |a (DE-He213)s00357-003-0004-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 150 |a 510 |a 600 |q VZ |
084 | |a 24,1 |2 ssgn | ||
100 | 1 | |a Stuetzle, Werner |e verfasserin |4 aut | |
245 | 1 | 0 | |a Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample |
264 | 1 | |c 2003 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag New York Inc. 2003 | ||
520 | |a runt pruning , a new clustering method that attempts to find modes of a density by analyzing the minimal spanning tree of a sample. The method exploits the connection between the minimal spanning tree and nearest neighbor density (e.g. normal mixture) or about the geometric shapes of the clusters, and is computationally feasible for large data sets. | ||
650 | 4 | |a Cluster Method | |
650 | 4 | |a Span Tree | |
650 | 4 | |a Large Data | |
650 | 4 | |a Geometric Shape | |
650 | 4 | |a Minimal Span Tree | |
773 | 0 | 8 | |i Enthalten in |t Journal of classification |d Springer-Verlag, 1984 |g 20(2003), 1 vom: Mai, Seite 025-047 |w (DE-627)129337323 |w (DE-600)142885-8 |w (DE-576)014642832 |x 0176-4268 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2003 |g number:1 |g month:05 |g pages:025-047 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00357-003-0004-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OPC-BBI | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4324 | ||
951 | |a AR | ||
952 | |d 20 |j 2003 |e 1 |c 05 |h 025-047 |
author_variant |
w s ws |
---|---|
matchkey_str |
article:01764268:2003----::siaighcutrrefdniyynlznteiias |
hierarchy_sort_str |
2003 |
publishDate |
2003 |
allfields |
10.1007/s00357-003-0004-6 doi (DE-627)OLC2062461860 (DE-He213)s00357-003-0004-6-p DE-627 ger DE-627 rakwb eng 150 510 600 VZ 24,1 ssgn Stuetzle, Werner verfasserin aut Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 2003 runt pruning , a new clustering method that attempts to find modes of a density by analyzing the minimal spanning tree of a sample. The method exploits the connection between the minimal spanning tree and nearest neighbor density (e.g. normal mixture) or about the geometric shapes of the clusters, and is computationally feasible for large data sets. Cluster Method Span Tree Large Data Geometric Shape Minimal Span Tree Enthalten in Journal of classification Springer-Verlag, 1984 20(2003), 1 vom: Mai, Seite 025-047 (DE-627)129337323 (DE-600)142885-8 (DE-576)014642832 0176-4268 nnns volume:20 year:2003 number:1 month:05 pages:025-047 https://doi.org/10.1007/s00357-003-0004-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4322 GBV_ILN_4324 AR 20 2003 1 05 025-047 |
spelling |
10.1007/s00357-003-0004-6 doi (DE-627)OLC2062461860 (DE-He213)s00357-003-0004-6-p DE-627 ger DE-627 rakwb eng 150 510 600 VZ 24,1 ssgn Stuetzle, Werner verfasserin aut Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 2003 runt pruning , a new clustering method that attempts to find modes of a density by analyzing the minimal spanning tree of a sample. The method exploits the connection between the minimal spanning tree and nearest neighbor density (e.g. normal mixture) or about the geometric shapes of the clusters, and is computationally feasible for large data sets. Cluster Method Span Tree Large Data Geometric Shape Minimal Span Tree Enthalten in Journal of classification Springer-Verlag, 1984 20(2003), 1 vom: Mai, Seite 025-047 (DE-627)129337323 (DE-600)142885-8 (DE-576)014642832 0176-4268 nnns volume:20 year:2003 number:1 month:05 pages:025-047 https://doi.org/10.1007/s00357-003-0004-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4322 GBV_ILN_4324 AR 20 2003 1 05 025-047 |
allfields_unstemmed |
10.1007/s00357-003-0004-6 doi (DE-627)OLC2062461860 (DE-He213)s00357-003-0004-6-p DE-627 ger DE-627 rakwb eng 150 510 600 VZ 24,1 ssgn Stuetzle, Werner verfasserin aut Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 2003 runt pruning , a new clustering method that attempts to find modes of a density by analyzing the minimal spanning tree of a sample. The method exploits the connection between the minimal spanning tree and nearest neighbor density (e.g. normal mixture) or about the geometric shapes of the clusters, and is computationally feasible for large data sets. Cluster Method Span Tree Large Data Geometric Shape Minimal Span Tree Enthalten in Journal of classification Springer-Verlag, 1984 20(2003), 1 vom: Mai, Seite 025-047 (DE-627)129337323 (DE-600)142885-8 (DE-576)014642832 0176-4268 nnns volume:20 year:2003 number:1 month:05 pages:025-047 https://doi.org/10.1007/s00357-003-0004-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4322 GBV_ILN_4324 AR 20 2003 1 05 025-047 |
allfieldsGer |
10.1007/s00357-003-0004-6 doi (DE-627)OLC2062461860 (DE-He213)s00357-003-0004-6-p DE-627 ger DE-627 rakwb eng 150 510 600 VZ 24,1 ssgn Stuetzle, Werner verfasserin aut Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 2003 runt pruning , a new clustering method that attempts to find modes of a density by analyzing the minimal spanning tree of a sample. The method exploits the connection between the minimal spanning tree and nearest neighbor density (e.g. normal mixture) or about the geometric shapes of the clusters, and is computationally feasible for large data sets. Cluster Method Span Tree Large Data Geometric Shape Minimal Span Tree Enthalten in Journal of classification Springer-Verlag, 1984 20(2003), 1 vom: Mai, Seite 025-047 (DE-627)129337323 (DE-600)142885-8 (DE-576)014642832 0176-4268 nnns volume:20 year:2003 number:1 month:05 pages:025-047 https://doi.org/10.1007/s00357-003-0004-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4322 GBV_ILN_4324 AR 20 2003 1 05 025-047 |
allfieldsSound |
10.1007/s00357-003-0004-6 doi (DE-627)OLC2062461860 (DE-He213)s00357-003-0004-6-p DE-627 ger DE-627 rakwb eng 150 510 600 VZ 24,1 ssgn Stuetzle, Werner verfasserin aut Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 2003 runt pruning , a new clustering method that attempts to find modes of a density by analyzing the minimal spanning tree of a sample. The method exploits the connection between the minimal spanning tree and nearest neighbor density (e.g. normal mixture) or about the geometric shapes of the clusters, and is computationally feasible for large data sets. Cluster Method Span Tree Large Data Geometric Shape Minimal Span Tree Enthalten in Journal of classification Springer-Verlag, 1984 20(2003), 1 vom: Mai, Seite 025-047 (DE-627)129337323 (DE-600)142885-8 (DE-576)014642832 0176-4268 nnns volume:20 year:2003 number:1 month:05 pages:025-047 https://doi.org/10.1007/s00357-003-0004-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4322 GBV_ILN_4324 AR 20 2003 1 05 025-047 |
language |
English |
source |
Enthalten in Journal of classification 20(2003), 1 vom: Mai, Seite 025-047 volume:20 year:2003 number:1 month:05 pages:025-047 |
sourceStr |
Enthalten in Journal of classification 20(2003), 1 vom: Mai, Seite 025-047 volume:20 year:2003 number:1 month:05 pages:025-047 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cluster Method Span Tree Large Data Geometric Shape Minimal Span Tree |
dewey-raw |
150 |
isfreeaccess_bool |
false |
container_title |
Journal of classification |
authorswithroles_txt_mv |
Stuetzle, Werner @@aut@@ |
publishDateDaySort_date |
2003-05-01T00:00:00Z |
hierarchy_top_id |
129337323 |
dewey-sort |
3150 |
id |
OLC2062461860 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062461860</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331141131.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00357-003-0004-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062461860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00357-003-0004-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">150</subfield><subfield code="a">510</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">24,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stuetzle, Werner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag New York Inc. 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">runt pruning , a new clustering method that attempts to find modes of a density by analyzing the minimal spanning tree of a sample. The method exploits the connection between the minimal spanning tree and nearest neighbor density (e.g. normal mixture) or about the geometric shapes of the clusters, and is computationally feasible for large data sets.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cluster Method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Span Tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric Shape</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal Span Tree</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of classification</subfield><subfield code="d">Springer-Verlag, 1984</subfield><subfield code="g">20(2003), 1 vom: Mai, Seite 025-047</subfield><subfield code="w">(DE-627)129337323</subfield><subfield code="w">(DE-600)142885-8</subfield><subfield code="w">(DE-576)014642832</subfield><subfield code="x">0176-4268</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:025-047</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00357-003-0004-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2003</subfield><subfield code="e">1</subfield><subfield code="c">05</subfield><subfield code="h">025-047</subfield></datafield></record></collection>
|
author |
Stuetzle, Werner |
spellingShingle |
Stuetzle, Werner ddc 150 ssgn 24,1 misc Cluster Method misc Span Tree misc Large Data misc Geometric Shape misc Minimal Span Tree Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample |
authorStr |
Stuetzle, Werner |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129337323 |
format |
Article |
dewey-ones |
150 - Psychology 510 - Mathematics 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0176-4268 |
topic_title |
150 510 600 VZ 24,1 ssgn Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample Cluster Method Span Tree Large Data Geometric Shape Minimal Span Tree |
topic |
ddc 150 ssgn 24,1 misc Cluster Method misc Span Tree misc Large Data misc Geometric Shape misc Minimal Span Tree |
topic_unstemmed |
ddc 150 ssgn 24,1 misc Cluster Method misc Span Tree misc Large Data misc Geometric Shape misc Minimal Span Tree |
topic_browse |
ddc 150 ssgn 24,1 misc Cluster Method misc Span Tree misc Large Data misc Geometric Shape misc Minimal Span Tree |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of classification |
hierarchy_parent_id |
129337323 |
dewey-tens |
150 - Psychology 510 - Mathematics 600 - Technology |
hierarchy_top_title |
Journal of classification |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129337323 (DE-600)142885-8 (DE-576)014642832 |
title |
Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample |
ctrlnum |
(DE-627)OLC2062461860 (DE-He213)s00357-003-0004-6-p |
title_full |
Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample |
author_sort |
Stuetzle, Werner |
journal |
Journal of classification |
journalStr |
Journal of classification |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
100 - Philosophy & psychology 500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2003 |
contenttype_str_mv |
txt |
container_start_page |
025 |
author_browse |
Stuetzle, Werner |
container_volume |
20 |
class |
150 510 600 VZ 24,1 ssgn |
format_se |
Aufsätze |
author-letter |
Stuetzle, Werner |
doi_str_mv |
10.1007/s00357-003-0004-6 |
dewey-full |
150 510 600 |
title_sort |
estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample |
title_auth |
Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample |
abstract |
runt pruning , a new clustering method that attempts to find modes of a density by analyzing the minimal spanning tree of a sample. The method exploits the connection between the minimal spanning tree and nearest neighbor density (e.g. normal mixture) or about the geometric shapes of the clusters, and is computationally feasible for large data sets. © Springer-Verlag New York Inc. 2003 |
abstractGer |
runt pruning , a new clustering method that attempts to find modes of a density by analyzing the minimal spanning tree of a sample. The method exploits the connection between the minimal spanning tree and nearest neighbor density (e.g. normal mixture) or about the geometric shapes of the clusters, and is computationally feasible for large data sets. © Springer-Verlag New York Inc. 2003 |
abstract_unstemmed |
runt pruning , a new clustering method that attempts to find modes of a density by analyzing the minimal spanning tree of a sample. The method exploits the connection between the minimal spanning tree and nearest neighbor density (e.g. normal mixture) or about the geometric shapes of the clusters, and is computationally feasible for large data sets. © Springer-Verlag New York Inc. 2003 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4322 GBV_ILN_4324 |
container_issue |
1 |
title_short |
Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample |
url |
https://doi.org/10.1007/s00357-003-0004-6 |
remote_bool |
false |
ppnlink |
129337323 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00357-003-0004-6 |
up_date |
2024-07-03T15:09:21.900Z |
_version_ |
1803571022424702976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062461860</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331141131.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00357-003-0004-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062461860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00357-003-0004-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">150</subfield><subfield code="a">510</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">24,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stuetzle, Werner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag New York Inc. 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">runt pruning , a new clustering method that attempts to find modes of a density by analyzing the minimal spanning tree of a sample. The method exploits the connection between the minimal spanning tree and nearest neighbor density (e.g. normal mixture) or about the geometric shapes of the clusters, and is computationally feasible for large data sets.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cluster Method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Span Tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric Shape</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal Span Tree</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of classification</subfield><subfield code="d">Springer-Verlag, 1984</subfield><subfield code="g">20(2003), 1 vom: Mai, Seite 025-047</subfield><subfield code="w">(DE-627)129337323</subfield><subfield code="w">(DE-600)142885-8</subfield><subfield code="w">(DE-576)014642832</subfield><subfield code="x">0176-4268</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:025-047</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00357-003-0004-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2003</subfield><subfield code="e">1</subfield><subfield code="c">05</subfield><subfield code="h">025-047</subfield></datafield></record></collection>
|
score |
7.400687 |