Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites
Abstract Cobalt-bearing pyrite (0.5–2.0 wt.% Co) is abnormally abundant (up to 35 vol.% of the total volume of the sulfide phase) in some eastern Pyrenean peridotite massifs, compared to pieces of subcontinental mantle studied so far for sulfides. Pyrite occurs as vermicular intergrowths inside pent...
Ausführliche Beschreibung
Autor*in: |
Lorand, Jean-Pierre [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Mineralogy and petrology - Springer Vienna, 1987, 101(2010), 1-2 vom: 03. Nov., Seite 115-128 |
---|---|
Übergeordnetes Werk: |
volume:101 ; year:2010 ; number:1-2 ; day:03 ; month:11 ; pages:115-128 |
Links: |
---|
DOI / URN: |
10.1007/s00710-010-0138-2 |
---|
Katalog-ID: |
OLC2062486731 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2062486731 | ||
003 | DE-627 | ||
005 | 20230502144406.0 | ||
007 | tu | ||
008 | 200820s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00710-010-0138-2 |2 doi | |
035 | |a (DE-627)OLC2062486731 | ||
035 | |a (DE-He213)s00710-010-0138-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 13 |2 ssgn | ||
084 | |a TE 1000 |q VZ |2 rvk | ||
100 | 1 | |a Lorand, Jean-Pierre |e verfasserin |4 aut | |
245 | 1 | 0 | |a Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2010 | ||
520 | |a Abstract Cobalt-bearing pyrite (0.5–2.0 wt.% Co) is abnormally abundant (up to 35 vol.% of the total volume of the sulfide phase) in some eastern Pyrenean peridotite massifs, compared to pieces of subcontinental mantle studied so far for sulfides. Pyrite occurs as vermicular intergrowths inside pentlandite and/or chalcopyrite or as coarser, blocky grains in the intergranular pores of host peridotites. Those different pyrites are characterized by different platinum-group element systematics (measured by laser ablation microprobe and ICP-MS). Vermicular pyrite intergrown with pentlandite displays Os-, Ir-, Ru- and Rh-enriched chondrite normalized PGE patterns of Monosulfide solid solution (Mss). In contrast, coarse-grained intergranular (“blocky”) pyrites, are PGE-poor. Chalcophile trace elements (i.e. Zn, Pb, Ag, Au) that are not usually concentrated in mantle-derived sulfides were commonly detected. By contrast, selenium contents are generally low, yielding thus pyrite with high S/Se ratio (>$ 10^{5} $), consistent with a sedimentary sulfur source. Pyrite microtextures and chalcophile trace element contents support a process of assimilation of crustal sulfur from the metamorphosed sedimentary country rocks. These latter generated highly reactive $ CO_{2} $-S fluids, which were injected into structural discontinuities of the lherzolitic bodies. Sulfur has reacted at T = 300–550°C with pre-existing, mantle-derived, metal-rich sulfide assemblages (pentlandite-chalcopyrite). Addition of crustal sulfur did produce Mss which, on cooling, exsolved the Os-rich pyrite in addition to pentlandite. The coarse-grained pyrite types have crystallized directly from S-rich fluids. | ||
650 | 4 | |a Olivine | |
650 | 4 | |a Pyrite | |
650 | 4 | |a Chalcopyrite | |
650 | 4 | |a Base Metal Sulfide | |
650 | 4 | |a Monosulfide Solid Solution | |
700 | 1 | |a Alard, Olivier |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mineralogy and petrology |d Springer Vienna, 1987 |g 101(2010), 1-2 vom: 03. Nov., Seite 115-128 |w (DE-627)129383856 |w (DE-600)166036-6 |w (DE-576)014770881 |x 0930-0708 |7 nnns |
773 | 1 | 8 | |g volume:101 |g year:2010 |g number:1-2 |g day:03 |g month:11 |g pages:115-128 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00710-010-0138-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2399 | ||
912 | |a GBV_ILN_4306 | ||
936 | r | v | |a TE 1000 |
951 | |a AR | ||
952 | |d 101 |j 2010 |e 1-2 |b 03 |c 11 |h 115-128 |
author_variant |
j p l jpl o a oa |
---|---|
matchkey_str |
article:09300708:2010----::yiercssiiainfrsasluipr |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s00710-010-0138-2 doi (DE-627)OLC2062486731 (DE-He213)s00710-010-0138-2-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Lorand, Jean-Pierre verfasserin aut Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract Cobalt-bearing pyrite (0.5–2.0 wt.% Co) is abnormally abundant (up to 35 vol.% of the total volume of the sulfide phase) in some eastern Pyrenean peridotite massifs, compared to pieces of subcontinental mantle studied so far for sulfides. Pyrite occurs as vermicular intergrowths inside pentlandite and/or chalcopyrite or as coarser, blocky grains in the intergranular pores of host peridotites. Those different pyrites are characterized by different platinum-group element systematics (measured by laser ablation microprobe and ICP-MS). Vermicular pyrite intergrown with pentlandite displays Os-, Ir-, Ru- and Rh-enriched chondrite normalized PGE patterns of Monosulfide solid solution (Mss). In contrast, coarse-grained intergranular (“blocky”) pyrites, are PGE-poor. Chalcophile trace elements (i.e. Zn, Pb, Ag, Au) that are not usually concentrated in mantle-derived sulfides were commonly detected. By contrast, selenium contents are generally low, yielding thus pyrite with high S/Se ratio (>$ 10^{5} $), consistent with a sedimentary sulfur source. Pyrite microtextures and chalcophile trace element contents support a process of assimilation of crustal sulfur from the metamorphosed sedimentary country rocks. These latter generated highly reactive $ CO_{2} $-S fluids, which were injected into structural discontinuities of the lherzolitic bodies. Sulfur has reacted at T = 300–550°C with pre-existing, mantle-derived, metal-rich sulfide assemblages (pentlandite-chalcopyrite). Addition of crustal sulfur did produce Mss which, on cooling, exsolved the Os-rich pyrite in addition to pentlandite. The coarse-grained pyrite types have crystallized directly from S-rich fluids. Olivine Pyrite Chalcopyrite Base Metal Sulfide Monosulfide Solid Solution Alard, Olivier aut Enthalten in Mineralogy and petrology Springer Vienna, 1987 101(2010), 1-2 vom: 03. Nov., Seite 115-128 (DE-627)129383856 (DE-600)166036-6 (DE-576)014770881 0930-0708 nnns volume:101 year:2010 number:1-2 day:03 month:11 pages:115-128 https://doi.org/10.1007/s00710-010-0138-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2015 GBV_ILN_2027 GBV_ILN_2399 GBV_ILN_4306 TE 1000 AR 101 2010 1-2 03 11 115-128 |
spelling |
10.1007/s00710-010-0138-2 doi (DE-627)OLC2062486731 (DE-He213)s00710-010-0138-2-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Lorand, Jean-Pierre verfasserin aut Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract Cobalt-bearing pyrite (0.5–2.0 wt.% Co) is abnormally abundant (up to 35 vol.% of the total volume of the sulfide phase) in some eastern Pyrenean peridotite massifs, compared to pieces of subcontinental mantle studied so far for sulfides. Pyrite occurs as vermicular intergrowths inside pentlandite and/or chalcopyrite or as coarser, blocky grains in the intergranular pores of host peridotites. Those different pyrites are characterized by different platinum-group element systematics (measured by laser ablation microprobe and ICP-MS). Vermicular pyrite intergrown with pentlandite displays Os-, Ir-, Ru- and Rh-enriched chondrite normalized PGE patterns of Monosulfide solid solution (Mss). In contrast, coarse-grained intergranular (“blocky”) pyrites, are PGE-poor. Chalcophile trace elements (i.e. Zn, Pb, Ag, Au) that are not usually concentrated in mantle-derived sulfides were commonly detected. By contrast, selenium contents are generally low, yielding thus pyrite with high S/Se ratio (>$ 10^{5} $), consistent with a sedimentary sulfur source. Pyrite microtextures and chalcophile trace element contents support a process of assimilation of crustal sulfur from the metamorphosed sedimentary country rocks. These latter generated highly reactive $ CO_{2} $-S fluids, which were injected into structural discontinuities of the lherzolitic bodies. Sulfur has reacted at T = 300–550°C with pre-existing, mantle-derived, metal-rich sulfide assemblages (pentlandite-chalcopyrite). Addition of crustal sulfur did produce Mss which, on cooling, exsolved the Os-rich pyrite in addition to pentlandite. The coarse-grained pyrite types have crystallized directly from S-rich fluids. Olivine Pyrite Chalcopyrite Base Metal Sulfide Monosulfide Solid Solution Alard, Olivier aut Enthalten in Mineralogy and petrology Springer Vienna, 1987 101(2010), 1-2 vom: 03. Nov., Seite 115-128 (DE-627)129383856 (DE-600)166036-6 (DE-576)014770881 0930-0708 nnns volume:101 year:2010 number:1-2 day:03 month:11 pages:115-128 https://doi.org/10.1007/s00710-010-0138-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2015 GBV_ILN_2027 GBV_ILN_2399 GBV_ILN_4306 TE 1000 AR 101 2010 1-2 03 11 115-128 |
allfields_unstemmed |
10.1007/s00710-010-0138-2 doi (DE-627)OLC2062486731 (DE-He213)s00710-010-0138-2-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Lorand, Jean-Pierre verfasserin aut Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract Cobalt-bearing pyrite (0.5–2.0 wt.% Co) is abnormally abundant (up to 35 vol.% of the total volume of the sulfide phase) in some eastern Pyrenean peridotite massifs, compared to pieces of subcontinental mantle studied so far for sulfides. Pyrite occurs as vermicular intergrowths inside pentlandite and/or chalcopyrite or as coarser, blocky grains in the intergranular pores of host peridotites. Those different pyrites are characterized by different platinum-group element systematics (measured by laser ablation microprobe and ICP-MS). Vermicular pyrite intergrown with pentlandite displays Os-, Ir-, Ru- and Rh-enriched chondrite normalized PGE patterns of Monosulfide solid solution (Mss). In contrast, coarse-grained intergranular (“blocky”) pyrites, are PGE-poor. Chalcophile trace elements (i.e. Zn, Pb, Ag, Au) that are not usually concentrated in mantle-derived sulfides were commonly detected. By contrast, selenium contents are generally low, yielding thus pyrite with high S/Se ratio (>$ 10^{5} $), consistent with a sedimentary sulfur source. Pyrite microtextures and chalcophile trace element contents support a process of assimilation of crustal sulfur from the metamorphosed sedimentary country rocks. These latter generated highly reactive $ CO_{2} $-S fluids, which were injected into structural discontinuities of the lherzolitic bodies. Sulfur has reacted at T = 300–550°C with pre-existing, mantle-derived, metal-rich sulfide assemblages (pentlandite-chalcopyrite). Addition of crustal sulfur did produce Mss which, on cooling, exsolved the Os-rich pyrite in addition to pentlandite. The coarse-grained pyrite types have crystallized directly from S-rich fluids. Olivine Pyrite Chalcopyrite Base Metal Sulfide Monosulfide Solid Solution Alard, Olivier aut Enthalten in Mineralogy and petrology Springer Vienna, 1987 101(2010), 1-2 vom: 03. Nov., Seite 115-128 (DE-627)129383856 (DE-600)166036-6 (DE-576)014770881 0930-0708 nnns volume:101 year:2010 number:1-2 day:03 month:11 pages:115-128 https://doi.org/10.1007/s00710-010-0138-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2015 GBV_ILN_2027 GBV_ILN_2399 GBV_ILN_4306 TE 1000 AR 101 2010 1-2 03 11 115-128 |
allfieldsGer |
10.1007/s00710-010-0138-2 doi (DE-627)OLC2062486731 (DE-He213)s00710-010-0138-2-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Lorand, Jean-Pierre verfasserin aut Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract Cobalt-bearing pyrite (0.5–2.0 wt.% Co) is abnormally abundant (up to 35 vol.% of the total volume of the sulfide phase) in some eastern Pyrenean peridotite massifs, compared to pieces of subcontinental mantle studied so far for sulfides. Pyrite occurs as vermicular intergrowths inside pentlandite and/or chalcopyrite or as coarser, blocky grains in the intergranular pores of host peridotites. Those different pyrites are characterized by different platinum-group element systematics (measured by laser ablation microprobe and ICP-MS). Vermicular pyrite intergrown with pentlandite displays Os-, Ir-, Ru- and Rh-enriched chondrite normalized PGE patterns of Monosulfide solid solution (Mss). In contrast, coarse-grained intergranular (“blocky”) pyrites, are PGE-poor. Chalcophile trace elements (i.e. Zn, Pb, Ag, Au) that are not usually concentrated in mantle-derived sulfides were commonly detected. By contrast, selenium contents are generally low, yielding thus pyrite with high S/Se ratio (>$ 10^{5} $), consistent with a sedimentary sulfur source. Pyrite microtextures and chalcophile trace element contents support a process of assimilation of crustal sulfur from the metamorphosed sedimentary country rocks. These latter generated highly reactive $ CO_{2} $-S fluids, which were injected into structural discontinuities of the lherzolitic bodies. Sulfur has reacted at T = 300–550°C with pre-existing, mantle-derived, metal-rich sulfide assemblages (pentlandite-chalcopyrite). Addition of crustal sulfur did produce Mss which, on cooling, exsolved the Os-rich pyrite in addition to pentlandite. The coarse-grained pyrite types have crystallized directly from S-rich fluids. Olivine Pyrite Chalcopyrite Base Metal Sulfide Monosulfide Solid Solution Alard, Olivier aut Enthalten in Mineralogy and petrology Springer Vienna, 1987 101(2010), 1-2 vom: 03. Nov., Seite 115-128 (DE-627)129383856 (DE-600)166036-6 (DE-576)014770881 0930-0708 nnns volume:101 year:2010 number:1-2 day:03 month:11 pages:115-128 https://doi.org/10.1007/s00710-010-0138-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2015 GBV_ILN_2027 GBV_ILN_2399 GBV_ILN_4306 TE 1000 AR 101 2010 1-2 03 11 115-128 |
allfieldsSound |
10.1007/s00710-010-0138-2 doi (DE-627)OLC2062486731 (DE-He213)s00710-010-0138-2-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Lorand, Jean-Pierre verfasserin aut Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract Cobalt-bearing pyrite (0.5–2.0 wt.% Co) is abnormally abundant (up to 35 vol.% of the total volume of the sulfide phase) in some eastern Pyrenean peridotite massifs, compared to pieces of subcontinental mantle studied so far for sulfides. Pyrite occurs as vermicular intergrowths inside pentlandite and/or chalcopyrite or as coarser, blocky grains in the intergranular pores of host peridotites. Those different pyrites are characterized by different platinum-group element systematics (measured by laser ablation microprobe and ICP-MS). Vermicular pyrite intergrown with pentlandite displays Os-, Ir-, Ru- and Rh-enriched chondrite normalized PGE patterns of Monosulfide solid solution (Mss). In contrast, coarse-grained intergranular (“blocky”) pyrites, are PGE-poor. Chalcophile trace elements (i.e. Zn, Pb, Ag, Au) that are not usually concentrated in mantle-derived sulfides were commonly detected. By contrast, selenium contents are generally low, yielding thus pyrite with high S/Se ratio (>$ 10^{5} $), consistent with a sedimentary sulfur source. Pyrite microtextures and chalcophile trace element contents support a process of assimilation of crustal sulfur from the metamorphosed sedimentary country rocks. These latter generated highly reactive $ CO_{2} $-S fluids, which were injected into structural discontinuities of the lherzolitic bodies. Sulfur has reacted at T = 300–550°C with pre-existing, mantle-derived, metal-rich sulfide assemblages (pentlandite-chalcopyrite). Addition of crustal sulfur did produce Mss which, on cooling, exsolved the Os-rich pyrite in addition to pentlandite. The coarse-grained pyrite types have crystallized directly from S-rich fluids. Olivine Pyrite Chalcopyrite Base Metal Sulfide Monosulfide Solid Solution Alard, Olivier aut Enthalten in Mineralogy and petrology Springer Vienna, 1987 101(2010), 1-2 vom: 03. Nov., Seite 115-128 (DE-627)129383856 (DE-600)166036-6 (DE-576)014770881 0930-0708 nnns volume:101 year:2010 number:1-2 day:03 month:11 pages:115-128 https://doi.org/10.1007/s00710-010-0138-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2015 GBV_ILN_2027 GBV_ILN_2399 GBV_ILN_4306 TE 1000 AR 101 2010 1-2 03 11 115-128 |
language |
English |
source |
Enthalten in Mineralogy and petrology 101(2010), 1-2 vom: 03. Nov., Seite 115-128 volume:101 year:2010 number:1-2 day:03 month:11 pages:115-128 |
sourceStr |
Enthalten in Mineralogy and petrology 101(2010), 1-2 vom: 03. Nov., Seite 115-128 volume:101 year:2010 number:1-2 day:03 month:11 pages:115-128 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Olivine Pyrite Chalcopyrite Base Metal Sulfide Monosulfide Solid Solution |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Mineralogy and petrology |
authorswithroles_txt_mv |
Lorand, Jean-Pierre @@aut@@ Alard, Olivier @@aut@@ |
publishDateDaySort_date |
2010-11-03T00:00:00Z |
hierarchy_top_id |
129383856 |
dewey-sort |
3550 |
id |
OLC2062486731 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062486731</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502144406.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00710-010-0138-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062486731</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00710-010-0138-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TE 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lorand, Jean-Pierre</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Cobalt-bearing pyrite (0.5–2.0 wt.% Co) is abnormally abundant (up to 35 vol.% of the total volume of the sulfide phase) in some eastern Pyrenean peridotite massifs, compared to pieces of subcontinental mantle studied so far for sulfides. Pyrite occurs as vermicular intergrowths inside pentlandite and/or chalcopyrite or as coarser, blocky grains in the intergranular pores of host peridotites. Those different pyrites are characterized by different platinum-group element systematics (measured by laser ablation microprobe and ICP-MS). Vermicular pyrite intergrown with pentlandite displays Os-, Ir-, Ru- and Rh-enriched chondrite normalized PGE patterns of Monosulfide solid solution (Mss). In contrast, coarse-grained intergranular (“blocky”) pyrites, are PGE-poor. Chalcophile trace elements (i.e. Zn, Pb, Ag, Au) that are not usually concentrated in mantle-derived sulfides were commonly detected. By contrast, selenium contents are generally low, yielding thus pyrite with high S/Se ratio (>$ 10^{5} $), consistent with a sedimentary sulfur source. Pyrite microtextures and chalcophile trace element contents support a process of assimilation of crustal sulfur from the metamorphosed sedimentary country rocks. These latter generated highly reactive $ CO_{2} $-S fluids, which were injected into structural discontinuities of the lherzolitic bodies. Sulfur has reacted at T = 300–550°C with pre-existing, mantle-derived, metal-rich sulfide assemblages (pentlandite-chalcopyrite). Addition of crustal sulfur did produce Mss which, on cooling, exsolved the Os-rich pyrite in addition to pentlandite. The coarse-grained pyrite types have crystallized directly from S-rich fluids.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Olivine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pyrite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chalcopyrite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Base Metal Sulfide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monosulfide Solid Solution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alard, Olivier</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mineralogy and petrology</subfield><subfield code="d">Springer Vienna, 1987</subfield><subfield code="g">101(2010), 1-2 vom: 03. Nov., Seite 115-128</subfield><subfield code="w">(DE-627)129383856</subfield><subfield code="w">(DE-600)166036-6</subfield><subfield code="w">(DE-576)014770881</subfield><subfield code="x">0930-0708</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:101</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:03</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:115-128</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00710-010-0138-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2399</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">TE 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">101</subfield><subfield code="j">2010</subfield><subfield code="e">1-2</subfield><subfield code="b">03</subfield><subfield code="c">11</subfield><subfield code="h">115-128</subfield></datafield></record></collection>
|
author |
Lorand, Jean-Pierre |
spellingShingle |
Lorand, Jean-Pierre ddc 550 ssgn 13 rvk TE 1000 misc Olivine misc Pyrite misc Chalcopyrite misc Base Metal Sulfide misc Monosulfide Solid Solution Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites |
authorStr |
Lorand, Jean-Pierre |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129383856 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0930-0708 |
topic_title |
550 VZ 13 ssgn TE 1000 VZ rvk Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites Olivine Pyrite Chalcopyrite Base Metal Sulfide Monosulfide Solid Solution |
topic |
ddc 550 ssgn 13 rvk TE 1000 misc Olivine misc Pyrite misc Chalcopyrite misc Base Metal Sulfide misc Monosulfide Solid Solution |
topic_unstemmed |
ddc 550 ssgn 13 rvk TE 1000 misc Olivine misc Pyrite misc Chalcopyrite misc Base Metal Sulfide misc Monosulfide Solid Solution |
topic_browse |
ddc 550 ssgn 13 rvk TE 1000 misc Olivine misc Pyrite misc Chalcopyrite misc Base Metal Sulfide misc Monosulfide Solid Solution |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mineralogy and petrology |
hierarchy_parent_id |
129383856 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Mineralogy and petrology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129383856 (DE-600)166036-6 (DE-576)014770881 |
title |
Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites |
ctrlnum |
(DE-627)OLC2062486731 (DE-He213)s00710-010-0138-2-p |
title_full |
Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites |
author_sort |
Lorand, Jean-Pierre |
journal |
Mineralogy and petrology |
journalStr |
Mineralogy and petrology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
115 |
author_browse |
Lorand, Jean-Pierre Alard, Olivier |
container_volume |
101 |
class |
550 VZ 13 ssgn TE 1000 VZ rvk |
format_se |
Aufsätze |
author-letter |
Lorand, Jean-Pierre |
doi_str_mv |
10.1007/s00710-010-0138-2 |
dewey-full |
550 |
title_sort |
pyrite tracks assimilation of crustal sulfur in pyrenean peridotites |
title_auth |
Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites |
abstract |
Abstract Cobalt-bearing pyrite (0.5–2.0 wt.% Co) is abnormally abundant (up to 35 vol.% of the total volume of the sulfide phase) in some eastern Pyrenean peridotite massifs, compared to pieces of subcontinental mantle studied so far for sulfides. Pyrite occurs as vermicular intergrowths inside pentlandite and/or chalcopyrite or as coarser, blocky grains in the intergranular pores of host peridotites. Those different pyrites are characterized by different platinum-group element systematics (measured by laser ablation microprobe and ICP-MS). Vermicular pyrite intergrown with pentlandite displays Os-, Ir-, Ru- and Rh-enriched chondrite normalized PGE patterns of Monosulfide solid solution (Mss). In contrast, coarse-grained intergranular (“blocky”) pyrites, are PGE-poor. Chalcophile trace elements (i.e. Zn, Pb, Ag, Au) that are not usually concentrated in mantle-derived sulfides were commonly detected. By contrast, selenium contents are generally low, yielding thus pyrite with high S/Se ratio (>$ 10^{5} $), consistent with a sedimentary sulfur source. Pyrite microtextures and chalcophile trace element contents support a process of assimilation of crustal sulfur from the metamorphosed sedimentary country rocks. These latter generated highly reactive $ CO_{2} $-S fluids, which were injected into structural discontinuities of the lherzolitic bodies. Sulfur has reacted at T = 300–550°C with pre-existing, mantle-derived, metal-rich sulfide assemblages (pentlandite-chalcopyrite). Addition of crustal sulfur did produce Mss which, on cooling, exsolved the Os-rich pyrite in addition to pentlandite. The coarse-grained pyrite types have crystallized directly from S-rich fluids. © Springer-Verlag 2010 |
abstractGer |
Abstract Cobalt-bearing pyrite (0.5–2.0 wt.% Co) is abnormally abundant (up to 35 vol.% of the total volume of the sulfide phase) in some eastern Pyrenean peridotite massifs, compared to pieces of subcontinental mantle studied so far for sulfides. Pyrite occurs as vermicular intergrowths inside pentlandite and/or chalcopyrite or as coarser, blocky grains in the intergranular pores of host peridotites. Those different pyrites are characterized by different platinum-group element systematics (measured by laser ablation microprobe and ICP-MS). Vermicular pyrite intergrown with pentlandite displays Os-, Ir-, Ru- and Rh-enriched chondrite normalized PGE patterns of Monosulfide solid solution (Mss). In contrast, coarse-grained intergranular (“blocky”) pyrites, are PGE-poor. Chalcophile trace elements (i.e. Zn, Pb, Ag, Au) that are not usually concentrated in mantle-derived sulfides were commonly detected. By contrast, selenium contents are generally low, yielding thus pyrite with high S/Se ratio (>$ 10^{5} $), consistent with a sedimentary sulfur source. Pyrite microtextures and chalcophile trace element contents support a process of assimilation of crustal sulfur from the metamorphosed sedimentary country rocks. These latter generated highly reactive $ CO_{2} $-S fluids, which were injected into structural discontinuities of the lherzolitic bodies. Sulfur has reacted at T = 300–550°C with pre-existing, mantle-derived, metal-rich sulfide assemblages (pentlandite-chalcopyrite). Addition of crustal sulfur did produce Mss which, on cooling, exsolved the Os-rich pyrite in addition to pentlandite. The coarse-grained pyrite types have crystallized directly from S-rich fluids. © Springer-Verlag 2010 |
abstract_unstemmed |
Abstract Cobalt-bearing pyrite (0.5–2.0 wt.% Co) is abnormally abundant (up to 35 vol.% of the total volume of the sulfide phase) in some eastern Pyrenean peridotite massifs, compared to pieces of subcontinental mantle studied so far for sulfides. Pyrite occurs as vermicular intergrowths inside pentlandite and/or chalcopyrite or as coarser, blocky grains in the intergranular pores of host peridotites. Those different pyrites are characterized by different platinum-group element systematics (measured by laser ablation microprobe and ICP-MS). Vermicular pyrite intergrown with pentlandite displays Os-, Ir-, Ru- and Rh-enriched chondrite normalized PGE patterns of Monosulfide solid solution (Mss). In contrast, coarse-grained intergranular (“blocky”) pyrites, are PGE-poor. Chalcophile trace elements (i.e. Zn, Pb, Ag, Au) that are not usually concentrated in mantle-derived sulfides were commonly detected. By contrast, selenium contents are generally low, yielding thus pyrite with high S/Se ratio (>$ 10^{5} $), consistent with a sedimentary sulfur source. Pyrite microtextures and chalcophile trace element contents support a process of assimilation of crustal sulfur from the metamorphosed sedimentary country rocks. These latter generated highly reactive $ CO_{2} $-S fluids, which were injected into structural discontinuities of the lherzolitic bodies. Sulfur has reacted at T = 300–550°C with pre-existing, mantle-derived, metal-rich sulfide assemblages (pentlandite-chalcopyrite). Addition of crustal sulfur did produce Mss which, on cooling, exsolved the Os-rich pyrite in addition to pentlandite. The coarse-grained pyrite types have crystallized directly from S-rich fluids. © Springer-Verlag 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2015 GBV_ILN_2027 GBV_ILN_2399 GBV_ILN_4306 |
container_issue |
1-2 |
title_short |
Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites |
url |
https://doi.org/10.1007/s00710-010-0138-2 |
remote_bool |
false |
author2 |
Alard, Olivier |
author2Str |
Alard, Olivier |
ppnlink |
129383856 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00710-010-0138-2 |
up_date |
2024-07-03T15:15:20.389Z |
_version_ |
1803571398332907520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062486731</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502144406.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00710-010-0138-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062486731</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00710-010-0138-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TE 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lorand, Jean-Pierre</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Cobalt-bearing pyrite (0.5–2.0 wt.% Co) is abnormally abundant (up to 35 vol.% of the total volume of the sulfide phase) in some eastern Pyrenean peridotite massifs, compared to pieces of subcontinental mantle studied so far for sulfides. Pyrite occurs as vermicular intergrowths inside pentlandite and/or chalcopyrite or as coarser, blocky grains in the intergranular pores of host peridotites. Those different pyrites are characterized by different platinum-group element systematics (measured by laser ablation microprobe and ICP-MS). Vermicular pyrite intergrown with pentlandite displays Os-, Ir-, Ru- and Rh-enriched chondrite normalized PGE patterns of Monosulfide solid solution (Mss). In contrast, coarse-grained intergranular (“blocky”) pyrites, are PGE-poor. Chalcophile trace elements (i.e. Zn, Pb, Ag, Au) that are not usually concentrated in mantle-derived sulfides were commonly detected. By contrast, selenium contents are generally low, yielding thus pyrite with high S/Se ratio (>$ 10^{5} $), consistent with a sedimentary sulfur source. Pyrite microtextures and chalcophile trace element contents support a process of assimilation of crustal sulfur from the metamorphosed sedimentary country rocks. These latter generated highly reactive $ CO_{2} $-S fluids, which were injected into structural discontinuities of the lherzolitic bodies. Sulfur has reacted at T = 300–550°C with pre-existing, mantle-derived, metal-rich sulfide assemblages (pentlandite-chalcopyrite). Addition of crustal sulfur did produce Mss which, on cooling, exsolved the Os-rich pyrite in addition to pentlandite. The coarse-grained pyrite types have crystallized directly from S-rich fluids.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Olivine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pyrite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chalcopyrite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Base Metal Sulfide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monosulfide Solid Solution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alard, Olivier</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mineralogy and petrology</subfield><subfield code="d">Springer Vienna, 1987</subfield><subfield code="g">101(2010), 1-2 vom: 03. Nov., Seite 115-128</subfield><subfield code="w">(DE-627)129383856</subfield><subfield code="w">(DE-600)166036-6</subfield><subfield code="w">(DE-576)014770881</subfield><subfield code="x">0930-0708</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:101</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:03</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:115-128</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00710-010-0138-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2399</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">TE 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">101</subfield><subfield code="j">2010</subfield><subfield code="e">1-2</subfield><subfield code="b">03</subfield><subfield code="c">11</subfield><subfield code="h">115-128</subfield></datafield></record></collection>
|
score |
7.402135 |