Global solutions to the second initial boundary value problem for fully nonlinear parabolic equations
Abstract This paper is concerned with the global existence of the second initial boundary value problem for fully nonlinear parabolic equations. It is proved that when the initial data is sufficiently small, the problem admits a unique global solution. Moreover, ast goes to +∞, the solution exponent...
Ausführliche Beschreibung
Autor*in: |
Songmu, Zheng [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1987 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Science Press 1987 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mathematica sinica - Springer-Verlag, 1985, 3(1987), 3 vom: Sept., Seite 237-246 |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:1987 ; number:3 ; month:09 ; pages:237-246 |
Links: |
---|
DOI / URN: |
10.1007/BF02560037 |
---|
Katalog-ID: |
OLC2062493223 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2062493223 | ||
003 | DE-627 | ||
005 | 20230502172509.0 | ||
007 | tu | ||
008 | 200820s1987 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02560037 |2 doi | |
035 | |a (DE-627)OLC2062493223 | ||
035 | |a (DE-He213)BF02560037-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Songmu, Zheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Global solutions to the second initial boundary value problem for fully nonlinear parabolic equations |
264 | 1 | |c 1987 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Science Press 1987 | ||
520 | |a Abstract This paper is concerned with the global existence of the second initial boundary value problem for fully nonlinear parabolic equations. It is proved that when the initial data is sufficiently small, the problem admits a unique global solution. Moreover, ast goes to +∞, the solution exponentially decays to zero. | ||
650 | 4 | |a Global Solution | |
650 | 4 | |a Global Existence | |
650 | 4 | |a Smooth Solution | |
650 | 4 | |a Initial Boundary | |
650 | 4 | |a Nonlinear Operator | |
773 | 0 | 8 | |i Enthalten in |t Acta mathematica sinica |d Springer-Verlag, 1985 |g 3(1987), 3 vom: Sept., Seite 237-246 |w (DE-627)129236772 |w (DE-600)58083-1 |w (DE-576)091206189 |x 1000-9574 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:1987 |g number:3 |g month:09 |g pages:237-246 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02560037 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4012 | ||
951 | |a AR | ||
952 | |d 3 |j 1987 |e 3 |c 09 |h 237-246 |
author_variant |
z s zs |
---|---|
matchkey_str |
article:10009574:1987----::lblouintteeodntabudrvlerbefrulnni |
hierarchy_sort_str |
1987 |
publishDate |
1987 |
allfields |
10.1007/BF02560037 doi (DE-627)OLC2062493223 (DE-He213)BF02560037-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Songmu, Zheng verfasserin aut Global solutions to the second initial boundary value problem for fully nonlinear parabolic equations 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Science Press 1987 Abstract This paper is concerned with the global existence of the second initial boundary value problem for fully nonlinear parabolic equations. It is proved that when the initial data is sufficiently small, the problem admits a unique global solution. Moreover, ast goes to +∞, the solution exponentially decays to zero. Global Solution Global Existence Smooth Solution Initial Boundary Nonlinear Operator Enthalten in Acta mathematica sinica Springer-Verlag, 1985 3(1987), 3 vom: Sept., Seite 237-246 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:3 year:1987 number:3 month:09 pages:237-246 https://doi.org/10.1007/BF02560037 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_4012 AR 3 1987 3 09 237-246 |
spelling |
10.1007/BF02560037 doi (DE-627)OLC2062493223 (DE-He213)BF02560037-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Songmu, Zheng verfasserin aut Global solutions to the second initial boundary value problem for fully nonlinear parabolic equations 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Science Press 1987 Abstract This paper is concerned with the global existence of the second initial boundary value problem for fully nonlinear parabolic equations. It is proved that when the initial data is sufficiently small, the problem admits a unique global solution. Moreover, ast goes to +∞, the solution exponentially decays to zero. Global Solution Global Existence Smooth Solution Initial Boundary Nonlinear Operator Enthalten in Acta mathematica sinica Springer-Verlag, 1985 3(1987), 3 vom: Sept., Seite 237-246 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:3 year:1987 number:3 month:09 pages:237-246 https://doi.org/10.1007/BF02560037 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_4012 AR 3 1987 3 09 237-246 |
allfields_unstemmed |
10.1007/BF02560037 doi (DE-627)OLC2062493223 (DE-He213)BF02560037-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Songmu, Zheng verfasserin aut Global solutions to the second initial boundary value problem for fully nonlinear parabolic equations 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Science Press 1987 Abstract This paper is concerned with the global existence of the second initial boundary value problem for fully nonlinear parabolic equations. It is proved that when the initial data is sufficiently small, the problem admits a unique global solution. Moreover, ast goes to +∞, the solution exponentially decays to zero. Global Solution Global Existence Smooth Solution Initial Boundary Nonlinear Operator Enthalten in Acta mathematica sinica Springer-Verlag, 1985 3(1987), 3 vom: Sept., Seite 237-246 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:3 year:1987 number:3 month:09 pages:237-246 https://doi.org/10.1007/BF02560037 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_4012 AR 3 1987 3 09 237-246 |
allfieldsGer |
10.1007/BF02560037 doi (DE-627)OLC2062493223 (DE-He213)BF02560037-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Songmu, Zheng verfasserin aut Global solutions to the second initial boundary value problem for fully nonlinear parabolic equations 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Science Press 1987 Abstract This paper is concerned with the global existence of the second initial boundary value problem for fully nonlinear parabolic equations. It is proved that when the initial data is sufficiently small, the problem admits a unique global solution. Moreover, ast goes to +∞, the solution exponentially decays to zero. Global Solution Global Existence Smooth Solution Initial Boundary Nonlinear Operator Enthalten in Acta mathematica sinica Springer-Verlag, 1985 3(1987), 3 vom: Sept., Seite 237-246 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:3 year:1987 number:3 month:09 pages:237-246 https://doi.org/10.1007/BF02560037 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_4012 AR 3 1987 3 09 237-246 |
allfieldsSound |
10.1007/BF02560037 doi (DE-627)OLC2062493223 (DE-He213)BF02560037-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Songmu, Zheng verfasserin aut Global solutions to the second initial boundary value problem for fully nonlinear parabolic equations 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Science Press 1987 Abstract This paper is concerned with the global existence of the second initial boundary value problem for fully nonlinear parabolic equations. It is proved that when the initial data is sufficiently small, the problem admits a unique global solution. Moreover, ast goes to +∞, the solution exponentially decays to zero. Global Solution Global Existence Smooth Solution Initial Boundary Nonlinear Operator Enthalten in Acta mathematica sinica Springer-Verlag, 1985 3(1987), 3 vom: Sept., Seite 237-246 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:3 year:1987 number:3 month:09 pages:237-246 https://doi.org/10.1007/BF02560037 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_4012 AR 3 1987 3 09 237-246 |
language |
English |
source |
Enthalten in Acta mathematica sinica 3(1987), 3 vom: Sept., Seite 237-246 volume:3 year:1987 number:3 month:09 pages:237-246 |
sourceStr |
Enthalten in Acta mathematica sinica 3(1987), 3 vom: Sept., Seite 237-246 volume:3 year:1987 number:3 month:09 pages:237-246 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Global Solution Global Existence Smooth Solution Initial Boundary Nonlinear Operator |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Acta mathematica sinica |
authorswithroles_txt_mv |
Songmu, Zheng @@aut@@ |
publishDateDaySort_date |
1987-09-01T00:00:00Z |
hierarchy_top_id |
129236772 |
dewey-sort |
3510 |
id |
OLC2062493223 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062493223</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502172509.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1987 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02560037</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062493223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02560037-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Songmu, Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global solutions to the second initial boundary value problem for fully nonlinear parabolic equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1987</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Science Press 1987</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper is concerned with the global existence of the second initial boundary value problem for fully nonlinear parabolic equations. It is proved that when the initial data is sufficiently small, the problem admits a unique global solution. Moreover, ast goes to +∞, the solution exponentially decays to zero.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Existence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smooth Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial Boundary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear Operator</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematica sinica</subfield><subfield code="d">Springer-Verlag, 1985</subfield><subfield code="g">3(1987), 3 vom: Sept., Seite 237-246</subfield><subfield code="w">(DE-627)129236772</subfield><subfield code="w">(DE-600)58083-1</subfield><subfield code="w">(DE-576)091206189</subfield><subfield code="x">1000-9574</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:1987</subfield><subfield code="g">number:3</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:237-246</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02560037</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">1987</subfield><subfield code="e">3</subfield><subfield code="c">09</subfield><subfield code="h">237-246</subfield></datafield></record></collection>
|
author |
Songmu, Zheng |
spellingShingle |
Songmu, Zheng ddc 510 ssgn 17,1 misc Global Solution misc Global Existence misc Smooth Solution misc Initial Boundary misc Nonlinear Operator Global solutions to the second initial boundary value problem for fully nonlinear parabolic equations |
authorStr |
Songmu, Zheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129236772 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1000-9574 |
topic_title |
510 VZ 17,1 ssgn Global solutions to the second initial boundary value problem for fully nonlinear parabolic equations Global Solution Global Existence Smooth Solution Initial Boundary Nonlinear Operator |
topic |
ddc 510 ssgn 17,1 misc Global Solution misc Global Existence misc Smooth Solution misc Initial Boundary misc Nonlinear Operator |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Global Solution misc Global Existence misc Smooth Solution misc Initial Boundary misc Nonlinear Operator |
topic_browse |
ddc 510 ssgn 17,1 misc Global Solution misc Global Existence misc Smooth Solution misc Initial Boundary misc Nonlinear Operator |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mathematica sinica |
hierarchy_parent_id |
129236772 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Acta mathematica sinica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 |
title |
Global solutions to the second initial boundary value problem for fully nonlinear parabolic equations |
ctrlnum |
(DE-627)OLC2062493223 (DE-He213)BF02560037-p |
title_full |
Global solutions to the second initial boundary value problem for fully nonlinear parabolic equations |
author_sort |
Songmu, Zheng |
journal |
Acta mathematica sinica |
journalStr |
Acta mathematica sinica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1987 |
contenttype_str_mv |
txt |
container_start_page |
237 |
author_browse |
Songmu, Zheng |
container_volume |
3 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Songmu, Zheng |
doi_str_mv |
10.1007/BF02560037 |
dewey-full |
510 |
title_sort |
global solutions to the second initial boundary value problem for fully nonlinear parabolic equations |
title_auth |
Global solutions to the second initial boundary value problem for fully nonlinear parabolic equations |
abstract |
Abstract This paper is concerned with the global existence of the second initial boundary value problem for fully nonlinear parabolic equations. It is proved that when the initial data is sufficiently small, the problem admits a unique global solution. Moreover, ast goes to +∞, the solution exponentially decays to zero. © Science Press 1987 |
abstractGer |
Abstract This paper is concerned with the global existence of the second initial boundary value problem for fully nonlinear parabolic equations. It is proved that when the initial data is sufficiently small, the problem admits a unique global solution. Moreover, ast goes to +∞, the solution exponentially decays to zero. © Science Press 1987 |
abstract_unstemmed |
Abstract This paper is concerned with the global existence of the second initial boundary value problem for fully nonlinear parabolic equations. It is proved that when the initial data is sufficiently small, the problem admits a unique global solution. Moreover, ast goes to +∞, the solution exponentially decays to zero. © Science Press 1987 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_4012 |
container_issue |
3 |
title_short |
Global solutions to the second initial boundary value problem for fully nonlinear parabolic equations |
url |
https://doi.org/10.1007/BF02560037 |
remote_bool |
false |
ppnlink |
129236772 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02560037 |
up_date |
2024-07-03T15:17:11.225Z |
_version_ |
1803571514545537024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062493223</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502172509.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1987 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02560037</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062493223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02560037-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Songmu, Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global solutions to the second initial boundary value problem for fully nonlinear parabolic equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1987</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Science Press 1987</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper is concerned with the global existence of the second initial boundary value problem for fully nonlinear parabolic equations. It is proved that when the initial data is sufficiently small, the problem admits a unique global solution. Moreover, ast goes to +∞, the solution exponentially decays to zero.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Existence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smooth Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial Boundary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear Operator</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematica sinica</subfield><subfield code="d">Springer-Verlag, 1985</subfield><subfield code="g">3(1987), 3 vom: Sept., Seite 237-246</subfield><subfield code="w">(DE-627)129236772</subfield><subfield code="w">(DE-600)58083-1</subfield><subfield code="w">(DE-576)091206189</subfield><subfield code="x">1000-9574</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:1987</subfield><subfield code="g">number:3</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:237-246</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02560037</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">1987</subfield><subfield code="e">3</subfield><subfield code="c">09</subfield><subfield code="h">237-246</subfield></datafield></record></collection>
|
score |
7.401886 |