Real interpolation between martingale hardy and BMO spaces
Abstract In this paper, we consider the real interpolation with a function parameter between martingale Hardy and BMO spaces. An interpolation theorem for martingale Hardy and BMO spaces is formulated. As an application, real interpolation between martingale Lorentz and BMO spaces is given.
Autor*in: |
Ren, Yan Bo [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mathematica sinica - Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985, 29(2012), 1 vom: 06. Sept., Seite 65-74 |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:2012 ; number:1 ; day:06 ; month:09 ; pages:65-74 |
Links: |
---|
DOI / URN: |
10.1007/s10114-012-1310-x |
---|
Katalog-ID: |
OLC2062516053 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2062516053 | ||
003 | DE-627 | ||
005 | 20230502172610.0 | ||
007 | tu | ||
008 | 200820s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10114-012-1310-x |2 doi | |
035 | |a (DE-627)OLC2062516053 | ||
035 | |a (DE-He213)s10114-012-1310-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Ren, Yan Bo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Real interpolation between martingale hardy and BMO spaces |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012 | ||
520 | |a Abstract In this paper, we consider the real interpolation with a function parameter between martingale Hardy and BMO spaces. An interpolation theorem for martingale Hardy and BMO spaces is formulated. As an application, real interpolation between martingale Lorentz and BMO spaces is given. | ||
650 | 4 | |a Martingale space | |
650 | 4 | |a BMO space | |
650 | 4 | |a Lorentz space | |
650 | 4 | |a real interpolation | |
650 | 4 | |a function parameter | |
700 | 1 | |a Guo, Tie Xin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta mathematica sinica |d Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 |g 29(2012), 1 vom: 06. Sept., Seite 65-74 |w (DE-627)129236772 |w (DE-600)58083-1 |w (DE-576)091206189 |x 1000-9574 |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:2012 |g number:1 |g day:06 |g month:09 |g pages:65-74 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10114-012-1310-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 29 |j 2012 |e 1 |b 06 |c 09 |h 65-74 |
author_variant |
y b r yb ybr t x g tx txg |
---|---|
matchkey_str |
article:10009574:2012----::elnepltobtenatnaea |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s10114-012-1310-x doi (DE-627)OLC2062516053 (DE-He213)s10114-012-1310-x-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Ren, Yan Bo verfasserin aut Real interpolation between martingale hardy and BMO spaces 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012 Abstract In this paper, we consider the real interpolation with a function parameter between martingale Hardy and BMO spaces. An interpolation theorem for martingale Hardy and BMO spaces is formulated. As an application, real interpolation between martingale Lorentz and BMO spaces is given. Martingale space BMO space Lorentz space real interpolation function parameter Guo, Tie Xin aut Enthalten in Acta mathematica sinica Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 29(2012), 1 vom: 06. Sept., Seite 65-74 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:29 year:2012 number:1 day:06 month:09 pages:65-74 https://doi.org/10.1007/s10114-012-1310-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4277 AR 29 2012 1 06 09 65-74 |
spelling |
10.1007/s10114-012-1310-x doi (DE-627)OLC2062516053 (DE-He213)s10114-012-1310-x-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Ren, Yan Bo verfasserin aut Real interpolation between martingale hardy and BMO spaces 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012 Abstract In this paper, we consider the real interpolation with a function parameter between martingale Hardy and BMO spaces. An interpolation theorem for martingale Hardy and BMO spaces is formulated. As an application, real interpolation between martingale Lorentz and BMO spaces is given. Martingale space BMO space Lorentz space real interpolation function parameter Guo, Tie Xin aut Enthalten in Acta mathematica sinica Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 29(2012), 1 vom: 06. Sept., Seite 65-74 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:29 year:2012 number:1 day:06 month:09 pages:65-74 https://doi.org/10.1007/s10114-012-1310-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4277 AR 29 2012 1 06 09 65-74 |
allfields_unstemmed |
10.1007/s10114-012-1310-x doi (DE-627)OLC2062516053 (DE-He213)s10114-012-1310-x-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Ren, Yan Bo verfasserin aut Real interpolation between martingale hardy and BMO spaces 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012 Abstract In this paper, we consider the real interpolation with a function parameter between martingale Hardy and BMO spaces. An interpolation theorem for martingale Hardy and BMO spaces is formulated. As an application, real interpolation between martingale Lorentz and BMO spaces is given. Martingale space BMO space Lorentz space real interpolation function parameter Guo, Tie Xin aut Enthalten in Acta mathematica sinica Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 29(2012), 1 vom: 06. Sept., Seite 65-74 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:29 year:2012 number:1 day:06 month:09 pages:65-74 https://doi.org/10.1007/s10114-012-1310-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4277 AR 29 2012 1 06 09 65-74 |
allfieldsGer |
10.1007/s10114-012-1310-x doi (DE-627)OLC2062516053 (DE-He213)s10114-012-1310-x-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Ren, Yan Bo verfasserin aut Real interpolation between martingale hardy and BMO spaces 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012 Abstract In this paper, we consider the real interpolation with a function parameter between martingale Hardy and BMO spaces. An interpolation theorem for martingale Hardy and BMO spaces is formulated. As an application, real interpolation between martingale Lorentz and BMO spaces is given. Martingale space BMO space Lorentz space real interpolation function parameter Guo, Tie Xin aut Enthalten in Acta mathematica sinica Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 29(2012), 1 vom: 06. Sept., Seite 65-74 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:29 year:2012 number:1 day:06 month:09 pages:65-74 https://doi.org/10.1007/s10114-012-1310-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4277 AR 29 2012 1 06 09 65-74 |
allfieldsSound |
10.1007/s10114-012-1310-x doi (DE-627)OLC2062516053 (DE-He213)s10114-012-1310-x-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Ren, Yan Bo verfasserin aut Real interpolation between martingale hardy and BMO spaces 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012 Abstract In this paper, we consider the real interpolation with a function parameter between martingale Hardy and BMO spaces. An interpolation theorem for martingale Hardy and BMO spaces is formulated. As an application, real interpolation between martingale Lorentz and BMO spaces is given. Martingale space BMO space Lorentz space real interpolation function parameter Guo, Tie Xin aut Enthalten in Acta mathematica sinica Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 29(2012), 1 vom: 06. Sept., Seite 65-74 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:29 year:2012 number:1 day:06 month:09 pages:65-74 https://doi.org/10.1007/s10114-012-1310-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4277 AR 29 2012 1 06 09 65-74 |
language |
English |
source |
Enthalten in Acta mathematica sinica 29(2012), 1 vom: 06. Sept., Seite 65-74 volume:29 year:2012 number:1 day:06 month:09 pages:65-74 |
sourceStr |
Enthalten in Acta mathematica sinica 29(2012), 1 vom: 06. Sept., Seite 65-74 volume:29 year:2012 number:1 day:06 month:09 pages:65-74 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Martingale space BMO space Lorentz space real interpolation function parameter |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Acta mathematica sinica |
authorswithroles_txt_mv |
Ren, Yan Bo @@aut@@ Guo, Tie Xin @@aut@@ |
publishDateDaySort_date |
2012-09-06T00:00:00Z |
hierarchy_top_id |
129236772 |
dewey-sort |
3510 |
id |
OLC2062516053 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062516053</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502172610.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10114-012-1310-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062516053</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10114-012-1310-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ren, Yan Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real interpolation between martingale hardy and BMO spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we consider the real interpolation with a function parameter between martingale Hardy and BMO spaces. An interpolation theorem for martingale Hardy and BMO spaces is formulated. As an application, real interpolation between martingale Lorentz and BMO spaces is given.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martingale space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BMO space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lorentz space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">real interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">function parameter</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Tie Xin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematica sinica</subfield><subfield code="d">Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985</subfield><subfield code="g">29(2012), 1 vom: 06. Sept., Seite 65-74</subfield><subfield code="w">(DE-627)129236772</subfield><subfield code="w">(DE-600)58083-1</subfield><subfield code="w">(DE-576)091206189</subfield><subfield code="x">1000-9574</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:65-74</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10114-012-1310-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">09</subfield><subfield code="h">65-74</subfield></datafield></record></collection>
|
author |
Ren, Yan Bo |
spellingShingle |
Ren, Yan Bo ddc 510 ssgn 17,1 misc Martingale space misc BMO space misc Lorentz space misc real interpolation misc function parameter Real interpolation between martingale hardy and BMO spaces |
authorStr |
Ren, Yan Bo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129236772 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1000-9574 |
topic_title |
510 VZ 17,1 ssgn Real interpolation between martingale hardy and BMO spaces Martingale space BMO space Lorentz space real interpolation function parameter |
topic |
ddc 510 ssgn 17,1 misc Martingale space misc BMO space misc Lorentz space misc real interpolation misc function parameter |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Martingale space misc BMO space misc Lorentz space misc real interpolation misc function parameter |
topic_browse |
ddc 510 ssgn 17,1 misc Martingale space misc BMO space misc Lorentz space misc real interpolation misc function parameter |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mathematica sinica |
hierarchy_parent_id |
129236772 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Acta mathematica sinica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 |
title |
Real interpolation between martingale hardy and BMO spaces |
ctrlnum |
(DE-627)OLC2062516053 (DE-He213)s10114-012-1310-x-p |
title_full |
Real interpolation between martingale hardy and BMO spaces |
author_sort |
Ren, Yan Bo |
journal |
Acta mathematica sinica |
journalStr |
Acta mathematica sinica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
65 |
author_browse |
Ren, Yan Bo Guo, Tie Xin |
container_volume |
29 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Ren, Yan Bo |
doi_str_mv |
10.1007/s10114-012-1310-x |
dewey-full |
510 |
title_sort |
real interpolation between martingale hardy and bmo spaces |
title_auth |
Real interpolation between martingale hardy and BMO spaces |
abstract |
Abstract In this paper, we consider the real interpolation with a function parameter between martingale Hardy and BMO spaces. An interpolation theorem for martingale Hardy and BMO spaces is formulated. As an application, real interpolation between martingale Lorentz and BMO spaces is given. © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012 |
abstractGer |
Abstract In this paper, we consider the real interpolation with a function parameter between martingale Hardy and BMO spaces. An interpolation theorem for martingale Hardy and BMO spaces is formulated. As an application, real interpolation between martingale Lorentz and BMO spaces is given. © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012 |
abstract_unstemmed |
Abstract In this paper, we consider the real interpolation with a function parameter between martingale Hardy and BMO spaces. An interpolation theorem for martingale Hardy and BMO spaces is formulated. As an application, real interpolation between martingale Lorentz and BMO spaces is given. © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4277 |
container_issue |
1 |
title_short |
Real interpolation between martingale hardy and BMO spaces |
url |
https://doi.org/10.1007/s10114-012-1310-x |
remote_bool |
false |
author2 |
Guo, Tie Xin |
author2Str |
Guo, Tie Xin |
ppnlink |
129236772 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10114-012-1310-x |
up_date |
2024-07-03T15:21:25.799Z |
_version_ |
1803571781495160832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062516053</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502172610.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10114-012-1310-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062516053</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10114-012-1310-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ren, Yan Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real interpolation between martingale hardy and BMO spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we consider the real interpolation with a function parameter between martingale Hardy and BMO spaces. An interpolation theorem for martingale Hardy and BMO spaces is formulated. As an application, real interpolation between martingale Lorentz and BMO spaces is given.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martingale space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BMO space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lorentz space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">real interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">function parameter</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Tie Xin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematica sinica</subfield><subfield code="d">Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985</subfield><subfield code="g">29(2012), 1 vom: 06. Sept., Seite 65-74</subfield><subfield code="w">(DE-627)129236772</subfield><subfield code="w">(DE-600)58083-1</subfield><subfield code="w">(DE-576)091206189</subfield><subfield code="x">1000-9574</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:65-74</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10114-012-1310-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">09</subfield><subfield code="h">65-74</subfield></datafield></record></collection>
|
score |
7.400342 |