Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate
Abstract Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for e...
Ausführliche Beschreibung
Autor*in: |
He, Feng Yang [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mathematica sinica - Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985, 34(2018), 10 vom: 08. Juni, Seite 1589-1610 |
---|---|
Übergeordnetes Werk: |
volume:34 ; year:2018 ; number:10 ; day:08 ; month:06 ; pages:1589-1610 |
Links: |
---|
DOI / URN: |
10.1007/s10114-018-7095-9 |
---|
Katalog-ID: |
OLC2062524242 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2062524242 | ||
003 | DE-627 | ||
005 | 20230502172634.0 | ||
007 | tu | ||
008 | 200820s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10114-018-7095-9 |2 doi | |
035 | |a (DE-627)OLC2062524242 | ||
035 | |a (DE-He213)s10114-018-7095-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a He, Feng Yang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018 | ||
520 | |a Abstract Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for estimating the extreme conditional quantiles with functional covariate that combines the nonparametric modeling techniques and extreme value theory systematically. Our proposed method is widely applicable, no matter whether the conditional distribution of a response variable Y given a vector of functional covariates X is short, light or heavy-tailed. It thus enriches the existing literature. | ||
650 | 4 | |a Extreme conditional quantile | |
650 | 4 | |a extreme value theory | |
650 | 4 | |a nonparametric modeling | |
650 | 4 | |a functional covariate | |
700 | 1 | |a Cheng, Ye Bin |4 aut | |
700 | 1 | |a Tong, Tie Jun |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta mathematica sinica |d Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 |g 34(2018), 10 vom: 08. Juni, Seite 1589-1610 |w (DE-627)129236772 |w (DE-600)58083-1 |w (DE-576)091206189 |x 1000-9574 |7 nnns |
773 | 1 | 8 | |g volume:34 |g year:2018 |g number:10 |g day:08 |g month:06 |g pages:1589-1610 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10114-018-7095-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
951 | |a AR | ||
952 | |d 34 |j 2018 |e 10 |b 08 |c 06 |h 1589-1610 |
author_variant |
f y h fy fyh y b c yb ybc t j t tj tjt |
---|---|
matchkey_str |
article:10009574:2018----::oprmtietmtooeteeodtoaqatlsi |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s10114-018-7095-9 doi (DE-627)OLC2062524242 (DE-He213)s10114-018-7095-9-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn He, Feng Yang verfasserin aut Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for estimating the extreme conditional quantiles with functional covariate that combines the nonparametric modeling techniques and extreme value theory systematically. Our proposed method is widely applicable, no matter whether the conditional distribution of a response variable Y given a vector of functional covariates X is short, light or heavy-tailed. It thus enriches the existing literature. Extreme conditional quantile extreme value theory nonparametric modeling functional covariate Cheng, Ye Bin aut Tong, Tie Jun aut Enthalten in Acta mathematica sinica Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 34(2018), 10 vom: 08. Juni, Seite 1589-1610 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:34 year:2018 number:10 day:08 month:06 pages:1589-1610 https://doi.org/10.1007/s10114-018-7095-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 AR 34 2018 10 08 06 1589-1610 |
spelling |
10.1007/s10114-018-7095-9 doi (DE-627)OLC2062524242 (DE-He213)s10114-018-7095-9-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn He, Feng Yang verfasserin aut Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for estimating the extreme conditional quantiles with functional covariate that combines the nonparametric modeling techniques and extreme value theory systematically. Our proposed method is widely applicable, no matter whether the conditional distribution of a response variable Y given a vector of functional covariates X is short, light or heavy-tailed. It thus enriches the existing literature. Extreme conditional quantile extreme value theory nonparametric modeling functional covariate Cheng, Ye Bin aut Tong, Tie Jun aut Enthalten in Acta mathematica sinica Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 34(2018), 10 vom: 08. Juni, Seite 1589-1610 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:34 year:2018 number:10 day:08 month:06 pages:1589-1610 https://doi.org/10.1007/s10114-018-7095-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 AR 34 2018 10 08 06 1589-1610 |
allfields_unstemmed |
10.1007/s10114-018-7095-9 doi (DE-627)OLC2062524242 (DE-He213)s10114-018-7095-9-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn He, Feng Yang verfasserin aut Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for estimating the extreme conditional quantiles with functional covariate that combines the nonparametric modeling techniques and extreme value theory systematically. Our proposed method is widely applicable, no matter whether the conditional distribution of a response variable Y given a vector of functional covariates X is short, light or heavy-tailed. It thus enriches the existing literature. Extreme conditional quantile extreme value theory nonparametric modeling functional covariate Cheng, Ye Bin aut Tong, Tie Jun aut Enthalten in Acta mathematica sinica Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 34(2018), 10 vom: 08. Juni, Seite 1589-1610 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:34 year:2018 number:10 day:08 month:06 pages:1589-1610 https://doi.org/10.1007/s10114-018-7095-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 AR 34 2018 10 08 06 1589-1610 |
allfieldsGer |
10.1007/s10114-018-7095-9 doi (DE-627)OLC2062524242 (DE-He213)s10114-018-7095-9-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn He, Feng Yang verfasserin aut Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for estimating the extreme conditional quantiles with functional covariate that combines the nonparametric modeling techniques and extreme value theory systematically. Our proposed method is widely applicable, no matter whether the conditional distribution of a response variable Y given a vector of functional covariates X is short, light or heavy-tailed. It thus enriches the existing literature. Extreme conditional quantile extreme value theory nonparametric modeling functional covariate Cheng, Ye Bin aut Tong, Tie Jun aut Enthalten in Acta mathematica sinica Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 34(2018), 10 vom: 08. Juni, Seite 1589-1610 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:34 year:2018 number:10 day:08 month:06 pages:1589-1610 https://doi.org/10.1007/s10114-018-7095-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 AR 34 2018 10 08 06 1589-1610 |
allfieldsSound |
10.1007/s10114-018-7095-9 doi (DE-627)OLC2062524242 (DE-He213)s10114-018-7095-9-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn He, Feng Yang verfasserin aut Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for estimating the extreme conditional quantiles with functional covariate that combines the nonparametric modeling techniques and extreme value theory systematically. Our proposed method is widely applicable, no matter whether the conditional distribution of a response variable Y given a vector of functional covariates X is short, light or heavy-tailed. It thus enriches the existing literature. Extreme conditional quantile extreme value theory nonparametric modeling functional covariate Cheng, Ye Bin aut Tong, Tie Jun aut Enthalten in Acta mathematica sinica Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 34(2018), 10 vom: 08. Juni, Seite 1589-1610 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:34 year:2018 number:10 day:08 month:06 pages:1589-1610 https://doi.org/10.1007/s10114-018-7095-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 AR 34 2018 10 08 06 1589-1610 |
language |
English |
source |
Enthalten in Acta mathematica sinica 34(2018), 10 vom: 08. Juni, Seite 1589-1610 volume:34 year:2018 number:10 day:08 month:06 pages:1589-1610 |
sourceStr |
Enthalten in Acta mathematica sinica 34(2018), 10 vom: 08. Juni, Seite 1589-1610 volume:34 year:2018 number:10 day:08 month:06 pages:1589-1610 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Extreme conditional quantile extreme value theory nonparametric modeling functional covariate |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Acta mathematica sinica |
authorswithroles_txt_mv |
He, Feng Yang @@aut@@ Cheng, Ye Bin @@aut@@ Tong, Tie Jun @@aut@@ |
publishDateDaySort_date |
2018-06-08T00:00:00Z |
hierarchy_top_id |
129236772 |
dewey-sort |
3510 |
id |
OLC2062524242 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062524242</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502172634.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10114-018-7095-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062524242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10114-018-7095-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">He, Feng Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for estimating the extreme conditional quantiles with functional covariate that combines the nonparametric modeling techniques and extreme value theory systematically. Our proposed method is widely applicable, no matter whether the conditional distribution of a response variable Y given a vector of functional covariates X is short, light or heavy-tailed. It thus enriches the existing literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extreme conditional quantile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">extreme value theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonparametric modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functional covariate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Ye Bin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tong, Tie Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematica sinica</subfield><subfield code="d">Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985</subfield><subfield code="g">34(2018), 10 vom: 08. Juni, Seite 1589-1610</subfield><subfield code="w">(DE-627)129236772</subfield><subfield code="w">(DE-600)58083-1</subfield><subfield code="w">(DE-576)091206189</subfield><subfield code="x">1000-9574</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:10</subfield><subfield code="g">day:08</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1589-1610</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10114-018-7095-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2018</subfield><subfield code="e">10</subfield><subfield code="b">08</subfield><subfield code="c">06</subfield><subfield code="h">1589-1610</subfield></datafield></record></collection>
|
author |
He, Feng Yang |
spellingShingle |
He, Feng Yang ddc 510 ssgn 17,1 misc Extreme conditional quantile misc extreme value theory misc nonparametric modeling misc functional covariate Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate |
authorStr |
He, Feng Yang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129236772 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1000-9574 |
topic_title |
510 VZ 17,1 ssgn Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate Extreme conditional quantile extreme value theory nonparametric modeling functional covariate |
topic |
ddc 510 ssgn 17,1 misc Extreme conditional quantile misc extreme value theory misc nonparametric modeling misc functional covariate |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Extreme conditional quantile misc extreme value theory misc nonparametric modeling misc functional covariate |
topic_browse |
ddc 510 ssgn 17,1 misc Extreme conditional quantile misc extreme value theory misc nonparametric modeling misc functional covariate |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mathematica sinica |
hierarchy_parent_id |
129236772 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Acta mathematica sinica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 |
title |
Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate |
ctrlnum |
(DE-627)OLC2062524242 (DE-He213)s10114-018-7095-9-p |
title_full |
Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate |
author_sort |
He, Feng Yang |
journal |
Acta mathematica sinica |
journalStr |
Acta mathematica sinica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
1589 |
author_browse |
He, Feng Yang Cheng, Ye Bin Tong, Tie Jun |
container_volume |
34 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
He, Feng Yang |
doi_str_mv |
10.1007/s10114-018-7095-9 |
dewey-full |
510 |
title_sort |
nonparametric estimation of extreme conditional quantiles with functional covariate |
title_auth |
Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate |
abstract |
Abstract Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for estimating the extreme conditional quantiles with functional covariate that combines the nonparametric modeling techniques and extreme value theory systematically. Our proposed method is widely applicable, no matter whether the conditional distribution of a response variable Y given a vector of functional covariates X is short, light or heavy-tailed. It thus enriches the existing literature. © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstractGer |
Abstract Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for estimating the extreme conditional quantiles with functional covariate that combines the nonparametric modeling techniques and extreme value theory systematically. Our proposed method is widely applicable, no matter whether the conditional distribution of a response variable Y given a vector of functional covariates X is short, light or heavy-tailed. It thus enriches the existing literature. © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for estimating the extreme conditional quantiles with functional covariate that combines the nonparametric modeling techniques and extreme value theory systematically. Our proposed method is widely applicable, no matter whether the conditional distribution of a response variable Y given a vector of functional covariates X is short, light or heavy-tailed. It thus enriches the existing literature. © Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 |
container_issue |
10 |
title_short |
Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate |
url |
https://doi.org/10.1007/s10114-018-7095-9 |
remote_bool |
false |
author2 |
Cheng, Ye Bin Tong, Tie Jun |
author2Str |
Cheng, Ye Bin Tong, Tie Jun |
ppnlink |
129236772 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10114-018-7095-9 |
up_date |
2024-07-03T15:23:12.858Z |
_version_ |
1803571893751513088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062524242</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502172634.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10114-018-7095-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062524242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10114-018-7095-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">He, Feng Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for estimating the extreme conditional quantiles with functional covariate that combines the nonparametric modeling techniques and extreme value theory systematically. Our proposed method is widely applicable, no matter whether the conditional distribution of a response variable Y given a vector of functional covariates X is short, light or heavy-tailed. It thus enriches the existing literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extreme conditional quantile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">extreme value theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonparametric modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functional covariate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Ye Bin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tong, Tie Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematica sinica</subfield><subfield code="d">Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985</subfield><subfield code="g">34(2018), 10 vom: 08. Juni, Seite 1589-1610</subfield><subfield code="w">(DE-627)129236772</subfield><subfield code="w">(DE-600)58083-1</subfield><subfield code="w">(DE-576)091206189</subfield><subfield code="x">1000-9574</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:10</subfield><subfield code="g">day:08</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1589-1610</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10114-018-7095-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2018</subfield><subfield code="e">10</subfield><subfield code="b">08</subfield><subfield code="c">06</subfield><subfield code="h">1589-1610</subfield></datafield></record></collection>
|
score |
7.4024754 |