Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements
Abstract For a double array {Vm,n,m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p (1 ≤ p ≤ 2) Banach space and an increasing double array {bm,n,m ≥ 1, n ≥ 1} of positive constants, the limit law $$max_{1\leq{k}\leq{m},1\leq{l}\leq{n}}\parallel\Sigma_{i=1}^k...
Ausführliche Beschreibung
Autor*in: |
Parker, Robert [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mathematica sinica - Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985, 35(2019), 5 vom: 15. Apr., Seite 583-596 |
---|---|
Übergeordnetes Werk: |
volume:35 ; year:2019 ; number:5 ; day:15 ; month:04 ; pages:583-596 |
Links: |
---|
DOI / URN: |
10.1007/s10114-019-8058-5 |
---|
Katalog-ID: |
OLC2062524994 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2062524994 | ||
003 | DE-627 | ||
005 | 20230502172642.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10114-019-8058-5 |2 doi | |
035 | |a (DE-627)OLC2062524994 | ||
035 | |a (DE-He213)s10114-019-8058-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Parker, Robert |e verfasserin |4 aut | |
245 | 1 | 0 | |a Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019 | ||
520 | |a Abstract For a double array {Vm,n,m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p (1 ≤ p ≤ 2) Banach space and an increasing double array {bm,n,m ≥ 1, n ≥ 1} of positive constants, the limit law $$max_{1\leq{k}\leq{m},1\leq{l}\leq{n}}\parallel\Sigma_{i=1}^k\Sigma_{j=1}^l{V_{i,j}}\parallel/b_{m,n}\rightarrow0$$ a.c. and in ℒp as m ∨ n → ∞ is shown to hold if $$\Sigma_{m=1}^\infty\Sigma_{n=1}^\infty{E}\parallel{V_{m,n}}\parallel^p/{b_{m,n}^p}<\infty$$. This strong law of large numbers provides a complete characterization of Rademacher type p Banach spaces. Results of this form are also established when 0 < p ≤ 1 where no independence or mean 0 conditions are placed on the random elements and without any geometric conditions placed on the underlying Banach space. | ||
650 | 4 | |a Real separable Banach space | |
650 | 4 | |a double array of independent random elements | |
650 | 4 | |a strong law of large numbers | |
650 | 4 | |a almost sure convergence | |
650 | 4 | |a Rademacher type | |
650 | 4 | |a Banach space | |
650 | 4 | |a convergence in | |
700 | 1 | |a Rosalsky, Andrew |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta mathematica sinica |d Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 |g 35(2019), 5 vom: 15. Apr., Seite 583-596 |w (DE-627)129236772 |w (DE-600)58083-1 |w (DE-576)091206189 |x 1000-9574 |7 nnns |
773 | 1 | 8 | |g volume:35 |g year:2019 |g number:5 |g day:15 |g month:04 |g pages:583-596 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10114-019-8058-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
951 | |a AR | ||
952 | |d 35 |j 2019 |e 5 |b 15 |c 04 |h 583-596 |
author_variant |
r p rp a r ar |
---|---|
matchkey_str |
article:10009574:2019----::togasfagnmesodulsmobncsae |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s10114-019-8058-5 doi (DE-627)OLC2062524994 (DE-He213)s10114-019-8058-5-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Parker, Robert verfasserin aut Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019 Abstract For a double array {Vm,n,m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p (1 ≤ p ≤ 2) Banach space and an increasing double array {bm,n,m ≥ 1, n ≥ 1} of positive constants, the limit law $$max_{1\leq{k}\leq{m},1\leq{l}\leq{n}}\parallel\Sigma_{i=1}^k\Sigma_{j=1}^l{V_{i,j}}\parallel/b_{m,n}\rightarrow0$$ a.c. and in ℒp as m ∨ n → ∞ is shown to hold if $$\Sigma_{m=1}^\infty\Sigma_{n=1}^\infty{E}\parallel{V_{m,n}}\parallel^p/{b_{m,n}^p}<\infty$$. This strong law of large numbers provides a complete characterization of Rademacher type p Banach spaces. Results of this form are also established when 0 < p ≤ 1 where no independence or mean 0 conditions are placed on the random elements and without any geometric conditions placed on the underlying Banach space. Real separable Banach space double array of independent random elements strong law of large numbers almost sure convergence Rademacher type Banach space convergence in Rosalsky, Andrew aut Enthalten in Acta mathematica sinica Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 35(2019), 5 vom: 15. Apr., Seite 583-596 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:35 year:2019 number:5 day:15 month:04 pages:583-596 https://doi.org/10.1007/s10114-019-8058-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 AR 35 2019 5 15 04 583-596 |
spelling |
10.1007/s10114-019-8058-5 doi (DE-627)OLC2062524994 (DE-He213)s10114-019-8058-5-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Parker, Robert verfasserin aut Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019 Abstract For a double array {Vm,n,m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p (1 ≤ p ≤ 2) Banach space and an increasing double array {bm,n,m ≥ 1, n ≥ 1} of positive constants, the limit law $$max_{1\leq{k}\leq{m},1\leq{l}\leq{n}}\parallel\Sigma_{i=1}^k\Sigma_{j=1}^l{V_{i,j}}\parallel/b_{m,n}\rightarrow0$$ a.c. and in ℒp as m ∨ n → ∞ is shown to hold if $$\Sigma_{m=1}^\infty\Sigma_{n=1}^\infty{E}\parallel{V_{m,n}}\parallel^p/{b_{m,n}^p}<\infty$$. This strong law of large numbers provides a complete characterization of Rademacher type p Banach spaces. Results of this form are also established when 0 < p ≤ 1 where no independence or mean 0 conditions are placed on the random elements and without any geometric conditions placed on the underlying Banach space. Real separable Banach space double array of independent random elements strong law of large numbers almost sure convergence Rademacher type Banach space convergence in Rosalsky, Andrew aut Enthalten in Acta mathematica sinica Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 35(2019), 5 vom: 15. Apr., Seite 583-596 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:35 year:2019 number:5 day:15 month:04 pages:583-596 https://doi.org/10.1007/s10114-019-8058-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 AR 35 2019 5 15 04 583-596 |
allfields_unstemmed |
10.1007/s10114-019-8058-5 doi (DE-627)OLC2062524994 (DE-He213)s10114-019-8058-5-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Parker, Robert verfasserin aut Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019 Abstract For a double array {Vm,n,m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p (1 ≤ p ≤ 2) Banach space and an increasing double array {bm,n,m ≥ 1, n ≥ 1} of positive constants, the limit law $$max_{1\leq{k}\leq{m},1\leq{l}\leq{n}}\parallel\Sigma_{i=1}^k\Sigma_{j=1}^l{V_{i,j}}\parallel/b_{m,n}\rightarrow0$$ a.c. and in ℒp as m ∨ n → ∞ is shown to hold if $$\Sigma_{m=1}^\infty\Sigma_{n=1}^\infty{E}\parallel{V_{m,n}}\parallel^p/{b_{m,n}^p}<\infty$$. This strong law of large numbers provides a complete characterization of Rademacher type p Banach spaces. Results of this form are also established when 0 < p ≤ 1 where no independence or mean 0 conditions are placed on the random elements and without any geometric conditions placed on the underlying Banach space. Real separable Banach space double array of independent random elements strong law of large numbers almost sure convergence Rademacher type Banach space convergence in Rosalsky, Andrew aut Enthalten in Acta mathematica sinica Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 35(2019), 5 vom: 15. Apr., Seite 583-596 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:35 year:2019 number:5 day:15 month:04 pages:583-596 https://doi.org/10.1007/s10114-019-8058-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 AR 35 2019 5 15 04 583-596 |
allfieldsGer |
10.1007/s10114-019-8058-5 doi (DE-627)OLC2062524994 (DE-He213)s10114-019-8058-5-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Parker, Robert verfasserin aut Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019 Abstract For a double array {Vm,n,m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p (1 ≤ p ≤ 2) Banach space and an increasing double array {bm,n,m ≥ 1, n ≥ 1} of positive constants, the limit law $$max_{1\leq{k}\leq{m},1\leq{l}\leq{n}}\parallel\Sigma_{i=1}^k\Sigma_{j=1}^l{V_{i,j}}\parallel/b_{m,n}\rightarrow0$$ a.c. and in ℒp as m ∨ n → ∞ is shown to hold if $$\Sigma_{m=1}^\infty\Sigma_{n=1}^\infty{E}\parallel{V_{m,n}}\parallel^p/{b_{m,n}^p}<\infty$$. This strong law of large numbers provides a complete characterization of Rademacher type p Banach spaces. Results of this form are also established when 0 < p ≤ 1 where no independence or mean 0 conditions are placed on the random elements and without any geometric conditions placed on the underlying Banach space. Real separable Banach space double array of independent random elements strong law of large numbers almost sure convergence Rademacher type Banach space convergence in Rosalsky, Andrew aut Enthalten in Acta mathematica sinica Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 35(2019), 5 vom: 15. Apr., Seite 583-596 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:35 year:2019 number:5 day:15 month:04 pages:583-596 https://doi.org/10.1007/s10114-019-8058-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 AR 35 2019 5 15 04 583-596 |
allfieldsSound |
10.1007/s10114-019-8058-5 doi (DE-627)OLC2062524994 (DE-He213)s10114-019-8058-5-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Parker, Robert verfasserin aut Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019 Abstract For a double array {Vm,n,m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p (1 ≤ p ≤ 2) Banach space and an increasing double array {bm,n,m ≥ 1, n ≥ 1} of positive constants, the limit law $$max_{1\leq{k}\leq{m},1\leq{l}\leq{n}}\parallel\Sigma_{i=1}^k\Sigma_{j=1}^l{V_{i,j}}\parallel/b_{m,n}\rightarrow0$$ a.c. and in ℒp as m ∨ n → ∞ is shown to hold if $$\Sigma_{m=1}^\infty\Sigma_{n=1}^\infty{E}\parallel{V_{m,n}}\parallel^p/{b_{m,n}^p}<\infty$$. This strong law of large numbers provides a complete characterization of Rademacher type p Banach spaces. Results of this form are also established when 0 < p ≤ 1 where no independence or mean 0 conditions are placed on the random elements and without any geometric conditions placed on the underlying Banach space. Real separable Banach space double array of independent random elements strong law of large numbers almost sure convergence Rademacher type Banach space convergence in Rosalsky, Andrew aut Enthalten in Acta mathematica sinica Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985 35(2019), 5 vom: 15. Apr., Seite 583-596 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:35 year:2019 number:5 day:15 month:04 pages:583-596 https://doi.org/10.1007/s10114-019-8058-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 AR 35 2019 5 15 04 583-596 |
language |
English |
source |
Enthalten in Acta mathematica sinica 35(2019), 5 vom: 15. Apr., Seite 583-596 volume:35 year:2019 number:5 day:15 month:04 pages:583-596 |
sourceStr |
Enthalten in Acta mathematica sinica 35(2019), 5 vom: 15. Apr., Seite 583-596 volume:35 year:2019 number:5 day:15 month:04 pages:583-596 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Real separable Banach space double array of independent random elements strong law of large numbers almost sure convergence Rademacher type Banach space convergence in |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Acta mathematica sinica |
authorswithroles_txt_mv |
Parker, Robert @@aut@@ Rosalsky, Andrew @@aut@@ |
publishDateDaySort_date |
2019-04-15T00:00:00Z |
hierarchy_top_id |
129236772 |
dewey-sort |
3510 |
id |
OLC2062524994 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062524994</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502172642.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10114-019-8058-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062524994</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10114-019-8058-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Parker, Robert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract For a double array {Vm,n,m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p (1 ≤ p ≤ 2) Banach space and an increasing double array {bm,n,m ≥ 1, n ≥ 1} of positive constants, the limit law $$max_{1\leq{k}\leq{m},1\leq{l}\leq{n}}\parallel\Sigma_{i=1}^k\Sigma_{j=1}^l{V_{i,j}}\parallel/b_{m,n}\rightarrow0$$ a.c. and in ℒp as m ∨ n → ∞ is shown to hold if $$\Sigma_{m=1}^\infty\Sigma_{n=1}^\infty{E}\parallel{V_{m,n}}\parallel^p/{b_{m,n}^p}<\infty$$. This strong law of large numbers provides a complete characterization of Rademacher type p Banach spaces. Results of this form are also established when 0 < p ≤ 1 where no independence or mean 0 conditions are placed on the random elements and without any geometric conditions placed on the underlying Banach space.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real separable Banach space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">double array of independent random elements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strong law of large numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">almost sure convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rademacher type</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convergence in</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosalsky, Andrew</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematica sinica</subfield><subfield code="d">Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985</subfield><subfield code="g">35(2019), 5 vom: 15. Apr., Seite 583-596</subfield><subfield code="w">(DE-627)129236772</subfield><subfield code="w">(DE-600)58083-1</subfield><subfield code="w">(DE-576)091206189</subfield><subfield code="x">1000-9574</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:5</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:583-596</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10114-019-8058-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2019</subfield><subfield code="e">5</subfield><subfield code="b">15</subfield><subfield code="c">04</subfield><subfield code="h">583-596</subfield></datafield></record></collection>
|
author |
Parker, Robert |
spellingShingle |
Parker, Robert ddc 510 ssgn 17,1 misc Real separable Banach space misc double array of independent random elements misc strong law of large numbers misc almost sure convergence misc Rademacher type misc Banach space misc convergence in Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements |
authorStr |
Parker, Robert |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129236772 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1000-9574 |
topic_title |
510 VZ 17,1 ssgn Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements Real separable Banach space double array of independent random elements strong law of large numbers almost sure convergence Rademacher type Banach space convergence in |
topic |
ddc 510 ssgn 17,1 misc Real separable Banach space misc double array of independent random elements misc strong law of large numbers misc almost sure convergence misc Rademacher type misc Banach space misc convergence in |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Real separable Banach space misc double array of independent random elements misc strong law of large numbers misc almost sure convergence misc Rademacher type misc Banach space misc convergence in |
topic_browse |
ddc 510 ssgn 17,1 misc Real separable Banach space misc double array of independent random elements misc strong law of large numbers misc almost sure convergence misc Rademacher type misc Banach space misc convergence in |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mathematica sinica |
hierarchy_parent_id |
129236772 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Acta mathematica sinica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 |
title |
Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements |
ctrlnum |
(DE-627)OLC2062524994 (DE-He213)s10114-019-8058-5-p |
title_full |
Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements |
author_sort |
Parker, Robert |
journal |
Acta mathematica sinica |
journalStr |
Acta mathematica sinica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
583 |
author_browse |
Parker, Robert Rosalsky, Andrew |
container_volume |
35 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Parker, Robert |
doi_str_mv |
10.1007/s10114-019-8058-5 |
dewey-full |
510 |
title_sort |
strong laws of large numbers for double sums of banach space valued random elements |
title_auth |
Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements |
abstract |
Abstract For a double array {Vm,n,m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p (1 ≤ p ≤ 2) Banach space and an increasing double array {bm,n,m ≥ 1, n ≥ 1} of positive constants, the limit law $$max_{1\leq{k}\leq{m},1\leq{l}\leq{n}}\parallel\Sigma_{i=1}^k\Sigma_{j=1}^l{V_{i,j}}\parallel/b_{m,n}\rightarrow0$$ a.c. and in ℒp as m ∨ n → ∞ is shown to hold if $$\Sigma_{m=1}^\infty\Sigma_{n=1}^\infty{E}\parallel{V_{m,n}}\parallel^p/{b_{m,n}^p}<\infty$$. This strong law of large numbers provides a complete characterization of Rademacher type p Banach spaces. Results of this form are also established when 0 < p ≤ 1 where no independence or mean 0 conditions are placed on the random elements and without any geometric conditions placed on the underlying Banach space. © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019 |
abstractGer |
Abstract For a double array {Vm,n,m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p (1 ≤ p ≤ 2) Banach space and an increasing double array {bm,n,m ≥ 1, n ≥ 1} of positive constants, the limit law $$max_{1\leq{k}\leq{m},1\leq{l}\leq{n}}\parallel\Sigma_{i=1}^k\Sigma_{j=1}^l{V_{i,j}}\parallel/b_{m,n}\rightarrow0$$ a.c. and in ℒp as m ∨ n → ∞ is shown to hold if $$\Sigma_{m=1}^\infty\Sigma_{n=1}^\infty{E}\parallel{V_{m,n}}\parallel^p/{b_{m,n}^p}<\infty$$. This strong law of large numbers provides a complete characterization of Rademacher type p Banach spaces. Results of this form are also established when 0 < p ≤ 1 where no independence or mean 0 conditions are placed on the random elements and without any geometric conditions placed on the underlying Banach space. © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019 |
abstract_unstemmed |
Abstract For a double array {Vm,n,m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p (1 ≤ p ≤ 2) Banach space and an increasing double array {bm,n,m ≥ 1, n ≥ 1} of positive constants, the limit law $$max_{1\leq{k}\leq{m},1\leq{l}\leq{n}}\parallel\Sigma_{i=1}^k\Sigma_{j=1}^l{V_{i,j}}\parallel/b_{m,n}\rightarrow0$$ a.c. and in ℒp as m ∨ n → ∞ is shown to hold if $$\Sigma_{m=1}^\infty\Sigma_{n=1}^\infty{E}\parallel{V_{m,n}}\parallel^p/{b_{m,n}^p}<\infty$$. This strong law of large numbers provides a complete characterization of Rademacher type p Banach spaces. Results of this form are also established when 0 < p ≤ 1 where no independence or mean 0 conditions are placed on the random elements and without any geometric conditions placed on the underlying Banach space. © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 |
container_issue |
5 |
title_short |
Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements |
url |
https://doi.org/10.1007/s10114-019-8058-5 |
remote_bool |
false |
author2 |
Rosalsky, Andrew |
author2Str |
Rosalsky, Andrew |
ppnlink |
129236772 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10114-019-8058-5 |
up_date |
2024-07-03T15:23:22.082Z |
_version_ |
1803571903419383808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062524994</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502172642.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10114-019-8058-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062524994</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10114-019-8058-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Parker, Robert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract For a double array {Vm,n,m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p (1 ≤ p ≤ 2) Banach space and an increasing double array {bm,n,m ≥ 1, n ≥ 1} of positive constants, the limit law $$max_{1\leq{k}\leq{m},1\leq{l}\leq{n}}\parallel\Sigma_{i=1}^k\Sigma_{j=1}^l{V_{i,j}}\parallel/b_{m,n}\rightarrow0$$ a.c. and in ℒp as m ∨ n → ∞ is shown to hold if $$\Sigma_{m=1}^\infty\Sigma_{n=1}^\infty{E}\parallel{V_{m,n}}\parallel^p/{b_{m,n}^p}<\infty$$. This strong law of large numbers provides a complete characterization of Rademacher type p Banach spaces. Results of this form are also established when 0 < p ≤ 1 where no independence or mean 0 conditions are placed on the random elements and without any geometric conditions placed on the underlying Banach space.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real separable Banach space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">double array of independent random elements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strong law of large numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">almost sure convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rademacher type</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convergence in</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosalsky, Andrew</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematica sinica</subfield><subfield code="d">Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 1985</subfield><subfield code="g">35(2019), 5 vom: 15. Apr., Seite 583-596</subfield><subfield code="w">(DE-627)129236772</subfield><subfield code="w">(DE-600)58083-1</subfield><subfield code="w">(DE-576)091206189</subfield><subfield code="x">1000-9574</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:5</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:583-596</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10114-019-8058-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2019</subfield><subfield code="e">5</subfield><subfield code="b">15</subfield><subfield code="c">04</subfield><subfield code="h">583-596</subfield></datafield></record></collection>
|
score |
7.402648 |