Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation
Abstract Tropical forest conversion, shiftingcultivation and clearing of secondary vegetation makesignificant contributions to global emissions ofgreenhouse gases today, and have the potential forlarge additional emissions in future decades. Globally, an estimated 3.1×$ 10^{9} $ t of biomasscarbon o...
Ausführliche Beschreibung
Autor*in: |
Fearnside, Philip M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2000 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Kluwer Academic Publishers 2000 |
---|
Übergeordnetes Werk: |
Enthalten in: Climatic change - Kluwer Academic Publishers, 1977, 46(2000), 1-2 vom: Juli, Seite 115-158 |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2000 ; number:1-2 ; month:07 ; pages:115-158 |
Links: |
---|
DOI / URN: |
10.1023/A:1005569915357 |
---|
Katalog-ID: |
OLC206258914X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC206258914X | ||
003 | DE-627 | ||
005 | 20230503024022.0 | ||
007 | tu | ||
008 | 200819s2000 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1005569915357 |2 doi | |
035 | |a (DE-627)OLC206258914X | ||
035 | |a (DE-He213)A:1005569915357-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 14 |2 ssgn | ||
084 | |a RA 1000 |q VZ |2 rvk | ||
100 | 1 | |a Fearnside, Philip M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation |
264 | 1 | |c 2000 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic Publishers 2000 | ||
520 | |a Abstract Tropical forest conversion, shiftingcultivation and clearing of secondary vegetation makesignificant contributions to global emissions ofgreenhouse gases today, and have the potential forlarge additional emissions in future decades. Globally, an estimated 3.1×$ 10^{9} $ t of biomasscarbon of these types is exposed to burning annually,of which 1.1×$ 10^{9} $ t is emitted to the atmospherethrough combustion and 49×$ 10^{6} $ t is converted tocharcoal (including 26–31×$ 10^{6} $ t C of blackcarbon). The amount of biomass exposed to burningincludes aboveground remains that failed to burn ordecompose from clearing in previous years, andtherefore exceeds the 1.9×$ 10^{9} $ t of abovegroundbiomass carbon cleared on average each year. Above-and belowground carbon emitted annually throughdecomposition processes totals 2.1×$ 10^{9} $ t C. Atotal gross emission (including decomposition ofunburned aboveground biomass and of belowgroundbiomass) of 3.41×$ 10^{9} $ t C $ year^{-1} $ resultsfrom clearing primary (nonfallow) and secondary(fallow) vegetation in the tropics. Adjustment fortrace gas emissions using IPCC Second AssessmentReport 100-year integration global warming potentialsmakes this equivalent to 3.39×$ 10^{9} $ t $ ofCO_{2} $-equivalent carbon under a low trace gasscenario and 3.83×$ 10^{9} $ t under a high trace gasscenario. Of these totals, 1.06×$ 10^{9} $ t (31%)is the result of biomass burning under the low tracegas scenario and 1.50×$ 10^{9} $ t (39%) under thehigh trace gas scenario. The net emissions from allclearing of natural vegetation and of secondaryforests (including both biomass and soil fluxes) is2.0×$ 10^{9} $ t C, equivalent to 2.0–2.4×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. Adding emissions of0.4×$ 10^{9} $ t C from land-use category changesother than deforestation brings the total for land-usechange (not considering uptake of intact forest,recurrent burning of savannas or fires in intactforests) to 2.4×$ 10^{9} $ t C, equivalent to 2.4–2.9×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. The totalnet emission of carbon from the tropical land usesconsidered here (2.4×$ 10^{9} $ t C $ year^{-1} $)calculated for the 1981–1990 period is 50% higherthan the 1.6×$ 10^{9} $ t C $ year^{-1} $ value used by the Intergovernmental Panel on Climate Change. The inferred (= `missing') sink in the global carbonbudget is larger than previously thought. However,about half of the additional source suggested here maybe offset by a possible sink in uptake by Amazonianforests. Both alterations indicate that continueddeforestation would produce greater impact on globalcarbon emissions. The total net emission of carboncalculated here indicates a major global warmingimpact from tropical land uses, equivalent toapproximately 29% of the total anthropogenic emissionfrom fossil fuels and land-use change. | ||
650 | 4 | |a Biomass | |
650 | 4 | |a Global Warming | |
650 | 4 | |a Aboveground Biomass | |
650 | 4 | |a Biomass Burning | |
650 | 4 | |a Forest Conversion | |
773 | 0 | 8 | |i Enthalten in |t Climatic change |d Kluwer Academic Publishers, 1977 |g 46(2000), 1-2 vom: Juli, Seite 115-158 |w (DE-627)130479020 |w (DE-600)751086-X |w (DE-576)016068610 |x 0165-0009 |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2000 |g number:1-2 |g month:07 |g pages:115-158 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1005569915357 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OLC-IBL | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4028 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4325 | ||
936 | r | v | |a RA 1000 |
951 | |a AR | ||
952 | |d 46 |j 2000 |e 1-2 |c 07 |h 115-158 |
author_variant |
p m f pm pmf |
---|---|
matchkey_str |
article:01650009:2000----::lblamnadrpcladscaggenosgsmsinfoboasunndcmoiinnsisnoetovrin |
hierarchy_sort_str |
2000 |
publishDate |
2000 |
allfields |
10.1023/A:1005569915357 doi (DE-627)OLC206258914X (DE-He213)A:1005569915357-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn RA 1000 VZ rvk Fearnside, Philip M. verfasserin aut Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation 2000 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2000 Abstract Tropical forest conversion, shiftingcultivation and clearing of secondary vegetation makesignificant contributions to global emissions ofgreenhouse gases today, and have the potential forlarge additional emissions in future decades. Globally, an estimated 3.1×$ 10^{9} $ t of biomasscarbon of these types is exposed to burning annually,of which 1.1×$ 10^{9} $ t is emitted to the atmospherethrough combustion and 49×$ 10^{6} $ t is converted tocharcoal (including 26–31×$ 10^{6} $ t C of blackcarbon). The amount of biomass exposed to burningincludes aboveground remains that failed to burn ordecompose from clearing in previous years, andtherefore exceeds the 1.9×$ 10^{9} $ t of abovegroundbiomass carbon cleared on average each year. Above-and belowground carbon emitted annually throughdecomposition processes totals 2.1×$ 10^{9} $ t C. Atotal gross emission (including decomposition ofunburned aboveground biomass and of belowgroundbiomass) of 3.41×$ 10^{9} $ t C $ year^{-1} $ resultsfrom clearing primary (nonfallow) and secondary(fallow) vegetation in the tropics. Adjustment fortrace gas emissions using IPCC Second AssessmentReport 100-year integration global warming potentialsmakes this equivalent to 3.39×$ 10^{9} $ t $ ofCO_{2} $-equivalent carbon under a low trace gasscenario and 3.83×$ 10^{9} $ t under a high trace gasscenario. Of these totals, 1.06×$ 10^{9} $ t (31%)is the result of biomass burning under the low tracegas scenario and 1.50×$ 10^{9} $ t (39%) under thehigh trace gas scenario. The net emissions from allclearing of natural vegetation and of secondaryforests (including both biomass and soil fluxes) is2.0×$ 10^{9} $ t C, equivalent to 2.0–2.4×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. Adding emissions of0.4×$ 10^{9} $ t C from land-use category changesother than deforestation brings the total for land-usechange (not considering uptake of intact forest,recurrent burning of savannas or fires in intactforests) to 2.4×$ 10^{9} $ t C, equivalent to 2.4–2.9×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. The totalnet emission of carbon from the tropical land usesconsidered here (2.4×$ 10^{9} $ t C $ year^{-1} $)calculated for the 1981–1990 period is 50% higherthan the 1.6×$ 10^{9} $ t C $ year^{-1} $ value used by the Intergovernmental Panel on Climate Change. The inferred (= `missing') sink in the global carbonbudget is larger than previously thought. However,about half of the additional source suggested here maybe offset by a possible sink in uptake by Amazonianforests. Both alterations indicate that continueddeforestation would produce greater impact on globalcarbon emissions. The total net emission of carboncalculated here indicates a major global warmingimpact from tropical land uses, equivalent toapproximately 29% of the total anthropogenic emissionfrom fossil fuels and land-use change. Biomass Global Warming Aboveground Biomass Biomass Burning Forest Conversion Enthalten in Climatic change Kluwer Academic Publishers, 1977 46(2000), 1-2 vom: Juli, Seite 115-158 (DE-627)130479020 (DE-600)751086-X (DE-576)016068610 0165-0009 nnns volume:46 year:2000 number:1-2 month:07 pages:115-158 https://doi.org/10.1023/A:1005569915357 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-GEO SSG-OLC-IBL SSG-OPC-GGO GBV_ILN_11 GBV_ILN_22 GBV_ILN_31 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_154 GBV_ILN_381 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4325 RA 1000 AR 46 2000 1-2 07 115-158 |
spelling |
10.1023/A:1005569915357 doi (DE-627)OLC206258914X (DE-He213)A:1005569915357-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn RA 1000 VZ rvk Fearnside, Philip M. verfasserin aut Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation 2000 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2000 Abstract Tropical forest conversion, shiftingcultivation and clearing of secondary vegetation makesignificant contributions to global emissions ofgreenhouse gases today, and have the potential forlarge additional emissions in future decades. Globally, an estimated 3.1×$ 10^{9} $ t of biomasscarbon of these types is exposed to burning annually,of which 1.1×$ 10^{9} $ t is emitted to the atmospherethrough combustion and 49×$ 10^{6} $ t is converted tocharcoal (including 26–31×$ 10^{6} $ t C of blackcarbon). The amount of biomass exposed to burningincludes aboveground remains that failed to burn ordecompose from clearing in previous years, andtherefore exceeds the 1.9×$ 10^{9} $ t of abovegroundbiomass carbon cleared on average each year. Above-and belowground carbon emitted annually throughdecomposition processes totals 2.1×$ 10^{9} $ t C. Atotal gross emission (including decomposition ofunburned aboveground biomass and of belowgroundbiomass) of 3.41×$ 10^{9} $ t C $ year^{-1} $ resultsfrom clearing primary (nonfallow) and secondary(fallow) vegetation in the tropics. Adjustment fortrace gas emissions using IPCC Second AssessmentReport 100-year integration global warming potentialsmakes this equivalent to 3.39×$ 10^{9} $ t $ ofCO_{2} $-equivalent carbon under a low trace gasscenario and 3.83×$ 10^{9} $ t under a high trace gasscenario. Of these totals, 1.06×$ 10^{9} $ t (31%)is the result of biomass burning under the low tracegas scenario and 1.50×$ 10^{9} $ t (39%) under thehigh trace gas scenario. The net emissions from allclearing of natural vegetation and of secondaryforests (including both biomass and soil fluxes) is2.0×$ 10^{9} $ t C, equivalent to 2.0–2.4×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. Adding emissions of0.4×$ 10^{9} $ t C from land-use category changesother than deforestation brings the total for land-usechange (not considering uptake of intact forest,recurrent burning of savannas or fires in intactforests) to 2.4×$ 10^{9} $ t C, equivalent to 2.4–2.9×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. The totalnet emission of carbon from the tropical land usesconsidered here (2.4×$ 10^{9} $ t C $ year^{-1} $)calculated for the 1981–1990 period is 50% higherthan the 1.6×$ 10^{9} $ t C $ year^{-1} $ value used by the Intergovernmental Panel on Climate Change. The inferred (= `missing') sink in the global carbonbudget is larger than previously thought. However,about half of the additional source suggested here maybe offset by a possible sink in uptake by Amazonianforests. Both alterations indicate that continueddeforestation would produce greater impact on globalcarbon emissions. The total net emission of carboncalculated here indicates a major global warmingimpact from tropical land uses, equivalent toapproximately 29% of the total anthropogenic emissionfrom fossil fuels and land-use change. Biomass Global Warming Aboveground Biomass Biomass Burning Forest Conversion Enthalten in Climatic change Kluwer Academic Publishers, 1977 46(2000), 1-2 vom: Juli, Seite 115-158 (DE-627)130479020 (DE-600)751086-X (DE-576)016068610 0165-0009 nnns volume:46 year:2000 number:1-2 month:07 pages:115-158 https://doi.org/10.1023/A:1005569915357 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-GEO SSG-OLC-IBL SSG-OPC-GGO GBV_ILN_11 GBV_ILN_22 GBV_ILN_31 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_154 GBV_ILN_381 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4325 RA 1000 AR 46 2000 1-2 07 115-158 |
allfields_unstemmed |
10.1023/A:1005569915357 doi (DE-627)OLC206258914X (DE-He213)A:1005569915357-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn RA 1000 VZ rvk Fearnside, Philip M. verfasserin aut Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation 2000 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2000 Abstract Tropical forest conversion, shiftingcultivation and clearing of secondary vegetation makesignificant contributions to global emissions ofgreenhouse gases today, and have the potential forlarge additional emissions in future decades. Globally, an estimated 3.1×$ 10^{9} $ t of biomasscarbon of these types is exposed to burning annually,of which 1.1×$ 10^{9} $ t is emitted to the atmospherethrough combustion and 49×$ 10^{6} $ t is converted tocharcoal (including 26–31×$ 10^{6} $ t C of blackcarbon). The amount of biomass exposed to burningincludes aboveground remains that failed to burn ordecompose from clearing in previous years, andtherefore exceeds the 1.9×$ 10^{9} $ t of abovegroundbiomass carbon cleared on average each year. Above-and belowground carbon emitted annually throughdecomposition processes totals 2.1×$ 10^{9} $ t C. Atotal gross emission (including decomposition ofunburned aboveground biomass and of belowgroundbiomass) of 3.41×$ 10^{9} $ t C $ year^{-1} $ resultsfrom clearing primary (nonfallow) and secondary(fallow) vegetation in the tropics. Adjustment fortrace gas emissions using IPCC Second AssessmentReport 100-year integration global warming potentialsmakes this equivalent to 3.39×$ 10^{9} $ t $ ofCO_{2} $-equivalent carbon under a low trace gasscenario and 3.83×$ 10^{9} $ t under a high trace gasscenario. Of these totals, 1.06×$ 10^{9} $ t (31%)is the result of biomass burning under the low tracegas scenario and 1.50×$ 10^{9} $ t (39%) under thehigh trace gas scenario. The net emissions from allclearing of natural vegetation and of secondaryforests (including both biomass and soil fluxes) is2.0×$ 10^{9} $ t C, equivalent to 2.0–2.4×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. Adding emissions of0.4×$ 10^{9} $ t C from land-use category changesother than deforestation brings the total for land-usechange (not considering uptake of intact forest,recurrent burning of savannas or fires in intactforests) to 2.4×$ 10^{9} $ t C, equivalent to 2.4–2.9×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. The totalnet emission of carbon from the tropical land usesconsidered here (2.4×$ 10^{9} $ t C $ year^{-1} $)calculated for the 1981–1990 period is 50% higherthan the 1.6×$ 10^{9} $ t C $ year^{-1} $ value used by the Intergovernmental Panel on Climate Change. The inferred (= `missing') sink in the global carbonbudget is larger than previously thought. However,about half of the additional source suggested here maybe offset by a possible sink in uptake by Amazonianforests. Both alterations indicate that continueddeforestation would produce greater impact on globalcarbon emissions. The total net emission of carboncalculated here indicates a major global warmingimpact from tropical land uses, equivalent toapproximately 29% of the total anthropogenic emissionfrom fossil fuels and land-use change. Biomass Global Warming Aboveground Biomass Biomass Burning Forest Conversion Enthalten in Climatic change Kluwer Academic Publishers, 1977 46(2000), 1-2 vom: Juli, Seite 115-158 (DE-627)130479020 (DE-600)751086-X (DE-576)016068610 0165-0009 nnns volume:46 year:2000 number:1-2 month:07 pages:115-158 https://doi.org/10.1023/A:1005569915357 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-GEO SSG-OLC-IBL SSG-OPC-GGO GBV_ILN_11 GBV_ILN_22 GBV_ILN_31 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_154 GBV_ILN_381 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4325 RA 1000 AR 46 2000 1-2 07 115-158 |
allfieldsGer |
10.1023/A:1005569915357 doi (DE-627)OLC206258914X (DE-He213)A:1005569915357-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn RA 1000 VZ rvk Fearnside, Philip M. verfasserin aut Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation 2000 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2000 Abstract Tropical forest conversion, shiftingcultivation and clearing of secondary vegetation makesignificant contributions to global emissions ofgreenhouse gases today, and have the potential forlarge additional emissions in future decades. Globally, an estimated 3.1×$ 10^{9} $ t of biomasscarbon of these types is exposed to burning annually,of which 1.1×$ 10^{9} $ t is emitted to the atmospherethrough combustion and 49×$ 10^{6} $ t is converted tocharcoal (including 26–31×$ 10^{6} $ t C of blackcarbon). The amount of biomass exposed to burningincludes aboveground remains that failed to burn ordecompose from clearing in previous years, andtherefore exceeds the 1.9×$ 10^{9} $ t of abovegroundbiomass carbon cleared on average each year. Above-and belowground carbon emitted annually throughdecomposition processes totals 2.1×$ 10^{9} $ t C. Atotal gross emission (including decomposition ofunburned aboveground biomass and of belowgroundbiomass) of 3.41×$ 10^{9} $ t C $ year^{-1} $ resultsfrom clearing primary (nonfallow) and secondary(fallow) vegetation in the tropics. Adjustment fortrace gas emissions using IPCC Second AssessmentReport 100-year integration global warming potentialsmakes this equivalent to 3.39×$ 10^{9} $ t $ ofCO_{2} $-equivalent carbon under a low trace gasscenario and 3.83×$ 10^{9} $ t under a high trace gasscenario. Of these totals, 1.06×$ 10^{9} $ t (31%)is the result of biomass burning under the low tracegas scenario and 1.50×$ 10^{9} $ t (39%) under thehigh trace gas scenario. The net emissions from allclearing of natural vegetation and of secondaryforests (including both biomass and soil fluxes) is2.0×$ 10^{9} $ t C, equivalent to 2.0–2.4×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. Adding emissions of0.4×$ 10^{9} $ t C from land-use category changesother than deforestation brings the total for land-usechange (not considering uptake of intact forest,recurrent burning of savannas or fires in intactforests) to 2.4×$ 10^{9} $ t C, equivalent to 2.4–2.9×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. The totalnet emission of carbon from the tropical land usesconsidered here (2.4×$ 10^{9} $ t C $ year^{-1} $)calculated for the 1981–1990 period is 50% higherthan the 1.6×$ 10^{9} $ t C $ year^{-1} $ value used by the Intergovernmental Panel on Climate Change. The inferred (= `missing') sink in the global carbonbudget is larger than previously thought. However,about half of the additional source suggested here maybe offset by a possible sink in uptake by Amazonianforests. Both alterations indicate that continueddeforestation would produce greater impact on globalcarbon emissions. The total net emission of carboncalculated here indicates a major global warmingimpact from tropical land uses, equivalent toapproximately 29% of the total anthropogenic emissionfrom fossil fuels and land-use change. Biomass Global Warming Aboveground Biomass Biomass Burning Forest Conversion Enthalten in Climatic change Kluwer Academic Publishers, 1977 46(2000), 1-2 vom: Juli, Seite 115-158 (DE-627)130479020 (DE-600)751086-X (DE-576)016068610 0165-0009 nnns volume:46 year:2000 number:1-2 month:07 pages:115-158 https://doi.org/10.1023/A:1005569915357 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-GEO SSG-OLC-IBL SSG-OPC-GGO GBV_ILN_11 GBV_ILN_22 GBV_ILN_31 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_154 GBV_ILN_381 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4325 RA 1000 AR 46 2000 1-2 07 115-158 |
allfieldsSound |
10.1023/A:1005569915357 doi (DE-627)OLC206258914X (DE-He213)A:1005569915357-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn RA 1000 VZ rvk Fearnside, Philip M. verfasserin aut Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation 2000 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2000 Abstract Tropical forest conversion, shiftingcultivation and clearing of secondary vegetation makesignificant contributions to global emissions ofgreenhouse gases today, and have the potential forlarge additional emissions in future decades. Globally, an estimated 3.1×$ 10^{9} $ t of biomasscarbon of these types is exposed to burning annually,of which 1.1×$ 10^{9} $ t is emitted to the atmospherethrough combustion and 49×$ 10^{6} $ t is converted tocharcoal (including 26–31×$ 10^{6} $ t C of blackcarbon). The amount of biomass exposed to burningincludes aboveground remains that failed to burn ordecompose from clearing in previous years, andtherefore exceeds the 1.9×$ 10^{9} $ t of abovegroundbiomass carbon cleared on average each year. Above-and belowground carbon emitted annually throughdecomposition processes totals 2.1×$ 10^{9} $ t C. Atotal gross emission (including decomposition ofunburned aboveground biomass and of belowgroundbiomass) of 3.41×$ 10^{9} $ t C $ year^{-1} $ resultsfrom clearing primary (nonfallow) and secondary(fallow) vegetation in the tropics. Adjustment fortrace gas emissions using IPCC Second AssessmentReport 100-year integration global warming potentialsmakes this equivalent to 3.39×$ 10^{9} $ t $ ofCO_{2} $-equivalent carbon under a low trace gasscenario and 3.83×$ 10^{9} $ t under a high trace gasscenario. Of these totals, 1.06×$ 10^{9} $ t (31%)is the result of biomass burning under the low tracegas scenario and 1.50×$ 10^{9} $ t (39%) under thehigh trace gas scenario. The net emissions from allclearing of natural vegetation and of secondaryforests (including both biomass and soil fluxes) is2.0×$ 10^{9} $ t C, equivalent to 2.0–2.4×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. Adding emissions of0.4×$ 10^{9} $ t C from land-use category changesother than deforestation brings the total for land-usechange (not considering uptake of intact forest,recurrent burning of savannas or fires in intactforests) to 2.4×$ 10^{9} $ t C, equivalent to 2.4–2.9×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. The totalnet emission of carbon from the tropical land usesconsidered here (2.4×$ 10^{9} $ t C $ year^{-1} $)calculated for the 1981–1990 period is 50% higherthan the 1.6×$ 10^{9} $ t C $ year^{-1} $ value used by the Intergovernmental Panel on Climate Change. The inferred (= `missing') sink in the global carbonbudget is larger than previously thought. However,about half of the additional source suggested here maybe offset by a possible sink in uptake by Amazonianforests. Both alterations indicate that continueddeforestation would produce greater impact on globalcarbon emissions. The total net emission of carboncalculated here indicates a major global warmingimpact from tropical land uses, equivalent toapproximately 29% of the total anthropogenic emissionfrom fossil fuels and land-use change. Biomass Global Warming Aboveground Biomass Biomass Burning Forest Conversion Enthalten in Climatic change Kluwer Academic Publishers, 1977 46(2000), 1-2 vom: Juli, Seite 115-158 (DE-627)130479020 (DE-600)751086-X (DE-576)016068610 0165-0009 nnns volume:46 year:2000 number:1-2 month:07 pages:115-158 https://doi.org/10.1023/A:1005569915357 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-GEO SSG-OLC-IBL SSG-OPC-GGO GBV_ILN_11 GBV_ILN_22 GBV_ILN_31 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_154 GBV_ILN_381 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4325 RA 1000 AR 46 2000 1-2 07 115-158 |
language |
English |
source |
Enthalten in Climatic change 46(2000), 1-2 vom: Juli, Seite 115-158 volume:46 year:2000 number:1-2 month:07 pages:115-158 |
sourceStr |
Enthalten in Climatic change 46(2000), 1-2 vom: Juli, Seite 115-158 volume:46 year:2000 number:1-2 month:07 pages:115-158 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biomass Global Warming Aboveground Biomass Biomass Burning Forest Conversion |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Climatic change |
authorswithroles_txt_mv |
Fearnside, Philip M. @@aut@@ |
publishDateDaySort_date |
2000-07-01T00:00:00Z |
hierarchy_top_id |
130479020 |
dewey-sort |
3550 |
id |
OLC206258914X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206258914X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503024022.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2000 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1005569915357</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206258914X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1005569915357-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RA 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fearnside, Philip M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2000</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2000</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Tropical forest conversion, shiftingcultivation and clearing of secondary vegetation makesignificant contributions to global emissions ofgreenhouse gases today, and have the potential forlarge additional emissions in future decades. Globally, an estimated 3.1×$ 10^{9} $ t of biomasscarbon of these types is exposed to burning annually,of which 1.1×$ 10^{9} $ t is emitted to the atmospherethrough combustion and 49×$ 10^{6} $ t is converted tocharcoal (including 26–31×$ 10^{6} $ t C of blackcarbon). The amount of biomass exposed to burningincludes aboveground remains that failed to burn ordecompose from clearing in previous years, andtherefore exceeds the 1.9×$ 10^{9} $ t of abovegroundbiomass carbon cleared on average each year. Above-and belowground carbon emitted annually throughdecomposition processes totals 2.1×$ 10^{9} $ t C. Atotal gross emission (including decomposition ofunburned aboveground biomass and of belowgroundbiomass) of 3.41×$ 10^{9} $ t C $ year^{-1} $ resultsfrom clearing primary (nonfallow) and secondary(fallow) vegetation in the tropics. Adjustment fortrace gas emissions using IPCC Second AssessmentReport 100-year integration global warming potentialsmakes this equivalent to 3.39×$ 10^{9} $ t $ ofCO_{2} $-equivalent carbon under a low trace gasscenario and 3.83×$ 10^{9} $ t under a high trace gasscenario. Of these totals, 1.06×$ 10^{9} $ t (31%)is the result of biomass burning under the low tracegas scenario and 1.50×$ 10^{9} $ t (39%) under thehigh trace gas scenario. The net emissions from allclearing of natural vegetation and of secondaryforests (including both biomass and soil fluxes) is2.0×$ 10^{9} $ t C, equivalent to 2.0–2.4×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. Adding emissions of0.4×$ 10^{9} $ t C from land-use category changesother than deforestation brings the total for land-usechange (not considering uptake of intact forest,recurrent burning of savannas or fires in intactforests) to 2.4×$ 10^{9} $ t C, equivalent to 2.4–2.9×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. The totalnet emission of carbon from the tropical land usesconsidered here (2.4×$ 10^{9} $ t C $ year^{-1} $)calculated for the 1981–1990 period is 50% higherthan the 1.6×$ 10^{9} $ t C $ year^{-1} $ value used by the Intergovernmental Panel on Climate Change. The inferred (= `missing') sink in the global carbonbudget is larger than previously thought. However,about half of the additional source suggested here maybe offset by a possible sink in uptake by Amazonianforests. Both alterations indicate that continueddeforestation would produce greater impact on globalcarbon emissions. The total net emission of carboncalculated here indicates a major global warmingimpact from tropical land uses, equivalent toapproximately 29% of the total anthropogenic emissionfrom fossil fuels and land-use change.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Warming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aboveground Biomass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomass Burning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forest Conversion</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Climatic change</subfield><subfield code="d">Kluwer Academic Publishers, 1977</subfield><subfield code="g">46(2000), 1-2 vom: Juli, Seite 115-158</subfield><subfield code="w">(DE-627)130479020</subfield><subfield code="w">(DE-600)751086-X</subfield><subfield code="w">(DE-576)016068610</subfield><subfield code="x">0165-0009</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2000</subfield><subfield code="g">number:1-2</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:115-158</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1005569915357</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-IBL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4028</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">RA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2000</subfield><subfield code="e">1-2</subfield><subfield code="c">07</subfield><subfield code="h">115-158</subfield></datafield></record></collection>
|
author |
Fearnside, Philip M. |
spellingShingle |
Fearnside, Philip M. ddc 550 ssgn 14 rvk RA 1000 misc Biomass misc Global Warming misc Aboveground Biomass misc Biomass Burning misc Forest Conversion Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation |
authorStr |
Fearnside, Philip M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130479020 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0165-0009 |
topic_title |
550 VZ 14 ssgn RA 1000 VZ rvk Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation Biomass Global Warming Aboveground Biomass Biomass Burning Forest Conversion |
topic |
ddc 550 ssgn 14 rvk RA 1000 misc Biomass misc Global Warming misc Aboveground Biomass misc Biomass Burning misc Forest Conversion |
topic_unstemmed |
ddc 550 ssgn 14 rvk RA 1000 misc Biomass misc Global Warming misc Aboveground Biomass misc Biomass Burning misc Forest Conversion |
topic_browse |
ddc 550 ssgn 14 rvk RA 1000 misc Biomass misc Global Warming misc Aboveground Biomass misc Biomass Burning misc Forest Conversion |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Climatic change |
hierarchy_parent_id |
130479020 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Climatic change |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130479020 (DE-600)751086-X (DE-576)016068610 |
title |
Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation |
ctrlnum |
(DE-627)OLC206258914X (DE-He213)A:1005569915357-p |
title_full |
Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation |
author_sort |
Fearnside, Philip M. |
journal |
Climatic change |
journalStr |
Climatic change |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2000 |
contenttype_str_mv |
txt |
container_start_page |
115 |
author_browse |
Fearnside, Philip M. |
container_volume |
46 |
class |
550 VZ 14 ssgn RA 1000 VZ rvk |
format_se |
Aufsätze |
author-letter |
Fearnside, Philip M. |
doi_str_mv |
10.1023/A:1005569915357 |
dewey-full |
550 |
title_sort |
global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation |
title_auth |
Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation |
abstract |
Abstract Tropical forest conversion, shiftingcultivation and clearing of secondary vegetation makesignificant contributions to global emissions ofgreenhouse gases today, and have the potential forlarge additional emissions in future decades. Globally, an estimated 3.1×$ 10^{9} $ t of biomasscarbon of these types is exposed to burning annually,of which 1.1×$ 10^{9} $ t is emitted to the atmospherethrough combustion and 49×$ 10^{6} $ t is converted tocharcoal (including 26–31×$ 10^{6} $ t C of blackcarbon). The amount of biomass exposed to burningincludes aboveground remains that failed to burn ordecompose from clearing in previous years, andtherefore exceeds the 1.9×$ 10^{9} $ t of abovegroundbiomass carbon cleared on average each year. Above-and belowground carbon emitted annually throughdecomposition processes totals 2.1×$ 10^{9} $ t C. Atotal gross emission (including decomposition ofunburned aboveground biomass and of belowgroundbiomass) of 3.41×$ 10^{9} $ t C $ year^{-1} $ resultsfrom clearing primary (nonfallow) and secondary(fallow) vegetation in the tropics. Adjustment fortrace gas emissions using IPCC Second AssessmentReport 100-year integration global warming potentialsmakes this equivalent to 3.39×$ 10^{9} $ t $ ofCO_{2} $-equivalent carbon under a low trace gasscenario and 3.83×$ 10^{9} $ t under a high trace gasscenario. Of these totals, 1.06×$ 10^{9} $ t (31%)is the result of biomass burning under the low tracegas scenario and 1.50×$ 10^{9} $ t (39%) under thehigh trace gas scenario. The net emissions from allclearing of natural vegetation and of secondaryforests (including both biomass and soil fluxes) is2.0×$ 10^{9} $ t C, equivalent to 2.0–2.4×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. Adding emissions of0.4×$ 10^{9} $ t C from land-use category changesother than deforestation brings the total for land-usechange (not considering uptake of intact forest,recurrent burning of savannas or fires in intactforests) to 2.4×$ 10^{9} $ t C, equivalent to 2.4–2.9×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. The totalnet emission of carbon from the tropical land usesconsidered here (2.4×$ 10^{9} $ t C $ year^{-1} $)calculated for the 1981–1990 period is 50% higherthan the 1.6×$ 10^{9} $ t C $ year^{-1} $ value used by the Intergovernmental Panel on Climate Change. The inferred (= `missing') sink in the global carbonbudget is larger than previously thought. However,about half of the additional source suggested here maybe offset by a possible sink in uptake by Amazonianforests. Both alterations indicate that continueddeforestation would produce greater impact on globalcarbon emissions. The total net emission of carboncalculated here indicates a major global warmingimpact from tropical land uses, equivalent toapproximately 29% of the total anthropogenic emissionfrom fossil fuels and land-use change. © Kluwer Academic Publishers 2000 |
abstractGer |
Abstract Tropical forest conversion, shiftingcultivation and clearing of secondary vegetation makesignificant contributions to global emissions ofgreenhouse gases today, and have the potential forlarge additional emissions in future decades. Globally, an estimated 3.1×$ 10^{9} $ t of biomasscarbon of these types is exposed to burning annually,of which 1.1×$ 10^{9} $ t is emitted to the atmospherethrough combustion and 49×$ 10^{6} $ t is converted tocharcoal (including 26–31×$ 10^{6} $ t C of blackcarbon). The amount of biomass exposed to burningincludes aboveground remains that failed to burn ordecompose from clearing in previous years, andtherefore exceeds the 1.9×$ 10^{9} $ t of abovegroundbiomass carbon cleared on average each year. Above-and belowground carbon emitted annually throughdecomposition processes totals 2.1×$ 10^{9} $ t C. Atotal gross emission (including decomposition ofunburned aboveground biomass and of belowgroundbiomass) of 3.41×$ 10^{9} $ t C $ year^{-1} $ resultsfrom clearing primary (nonfallow) and secondary(fallow) vegetation in the tropics. Adjustment fortrace gas emissions using IPCC Second AssessmentReport 100-year integration global warming potentialsmakes this equivalent to 3.39×$ 10^{9} $ t $ ofCO_{2} $-equivalent carbon under a low trace gasscenario and 3.83×$ 10^{9} $ t under a high trace gasscenario. Of these totals, 1.06×$ 10^{9} $ t (31%)is the result of biomass burning under the low tracegas scenario and 1.50×$ 10^{9} $ t (39%) under thehigh trace gas scenario. The net emissions from allclearing of natural vegetation and of secondaryforests (including both biomass and soil fluxes) is2.0×$ 10^{9} $ t C, equivalent to 2.0–2.4×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. Adding emissions of0.4×$ 10^{9} $ t C from land-use category changesother than deforestation brings the total for land-usechange (not considering uptake of intact forest,recurrent burning of savannas or fires in intactforests) to 2.4×$ 10^{9} $ t C, equivalent to 2.4–2.9×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. The totalnet emission of carbon from the tropical land usesconsidered here (2.4×$ 10^{9} $ t C $ year^{-1} $)calculated for the 1981–1990 period is 50% higherthan the 1.6×$ 10^{9} $ t C $ year^{-1} $ value used by the Intergovernmental Panel on Climate Change. The inferred (= `missing') sink in the global carbonbudget is larger than previously thought. However,about half of the additional source suggested here maybe offset by a possible sink in uptake by Amazonianforests. Both alterations indicate that continueddeforestation would produce greater impact on globalcarbon emissions. The total net emission of carboncalculated here indicates a major global warmingimpact from tropical land uses, equivalent toapproximately 29% of the total anthropogenic emissionfrom fossil fuels and land-use change. © Kluwer Academic Publishers 2000 |
abstract_unstemmed |
Abstract Tropical forest conversion, shiftingcultivation and clearing of secondary vegetation makesignificant contributions to global emissions ofgreenhouse gases today, and have the potential forlarge additional emissions in future decades. Globally, an estimated 3.1×$ 10^{9} $ t of biomasscarbon of these types is exposed to burning annually,of which 1.1×$ 10^{9} $ t is emitted to the atmospherethrough combustion and 49×$ 10^{6} $ t is converted tocharcoal (including 26–31×$ 10^{6} $ t C of blackcarbon). The amount of biomass exposed to burningincludes aboveground remains that failed to burn ordecompose from clearing in previous years, andtherefore exceeds the 1.9×$ 10^{9} $ t of abovegroundbiomass carbon cleared on average each year. Above-and belowground carbon emitted annually throughdecomposition processes totals 2.1×$ 10^{9} $ t C. Atotal gross emission (including decomposition ofunburned aboveground biomass and of belowgroundbiomass) of 3.41×$ 10^{9} $ t C $ year^{-1} $ resultsfrom clearing primary (nonfallow) and secondary(fallow) vegetation in the tropics. Adjustment fortrace gas emissions using IPCC Second AssessmentReport 100-year integration global warming potentialsmakes this equivalent to 3.39×$ 10^{9} $ t $ ofCO_{2} $-equivalent carbon under a low trace gasscenario and 3.83×$ 10^{9} $ t under a high trace gasscenario. Of these totals, 1.06×$ 10^{9} $ t (31%)is the result of biomass burning under the low tracegas scenario and 1.50×$ 10^{9} $ t (39%) under thehigh trace gas scenario. The net emissions from allclearing of natural vegetation and of secondaryforests (including both biomass and soil fluxes) is2.0×$ 10^{9} $ t C, equivalent to 2.0–2.4×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. Adding emissions of0.4×$ 10^{9} $ t C from land-use category changesother than deforestation brings the total for land-usechange (not considering uptake of intact forest,recurrent burning of savannas or fires in intactforests) to 2.4×$ 10^{9} $ t C, equivalent to 2.4–2.9×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. The totalnet emission of carbon from the tropical land usesconsidered here (2.4×$ 10^{9} $ t C $ year^{-1} $)calculated for the 1981–1990 period is 50% higherthan the 1.6×$ 10^{9} $ t C $ year^{-1} $ value used by the Intergovernmental Panel on Climate Change. The inferred (= `missing') sink in the global carbonbudget is larger than previously thought. However,about half of the additional source suggested here maybe offset by a possible sink in uptake by Amazonianforests. Both alterations indicate that continueddeforestation would produce greater impact on globalcarbon emissions. The total net emission of carboncalculated here indicates a major global warmingimpact from tropical land uses, equivalent toapproximately 29% of the total anthropogenic emissionfrom fossil fuels and land-use change. © Kluwer Academic Publishers 2000 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-GEO SSG-OLC-IBL SSG-OPC-GGO GBV_ILN_11 GBV_ILN_22 GBV_ILN_31 GBV_ILN_40 GBV_ILN_47 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_154 GBV_ILN_381 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4325 |
container_issue |
1-2 |
title_short |
Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation |
url |
https://doi.org/10.1023/A:1005569915357 |
remote_bool |
false |
ppnlink |
130479020 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1005569915357 |
up_date |
2024-07-03T15:39:33.125Z |
_version_ |
1803572921635962880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206258914X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503024022.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2000 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1005569915357</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206258914X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1005569915357-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RA 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fearnside, Philip M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2000</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2000</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Tropical forest conversion, shiftingcultivation and clearing of secondary vegetation makesignificant contributions to global emissions ofgreenhouse gases today, and have the potential forlarge additional emissions in future decades. Globally, an estimated 3.1×$ 10^{9} $ t of biomasscarbon of these types is exposed to burning annually,of which 1.1×$ 10^{9} $ t is emitted to the atmospherethrough combustion and 49×$ 10^{6} $ t is converted tocharcoal (including 26–31×$ 10^{6} $ t C of blackcarbon). The amount of biomass exposed to burningincludes aboveground remains that failed to burn ordecompose from clearing in previous years, andtherefore exceeds the 1.9×$ 10^{9} $ t of abovegroundbiomass carbon cleared on average each year. Above-and belowground carbon emitted annually throughdecomposition processes totals 2.1×$ 10^{9} $ t C. Atotal gross emission (including decomposition ofunburned aboveground biomass and of belowgroundbiomass) of 3.41×$ 10^{9} $ t C $ year^{-1} $ resultsfrom clearing primary (nonfallow) and secondary(fallow) vegetation in the tropics. Adjustment fortrace gas emissions using IPCC Second AssessmentReport 100-year integration global warming potentialsmakes this equivalent to 3.39×$ 10^{9} $ t $ ofCO_{2} $-equivalent carbon under a low trace gasscenario and 3.83×$ 10^{9} $ t under a high trace gasscenario. Of these totals, 1.06×$ 10^{9} $ t (31%)is the result of biomass burning under the low tracegas scenario and 1.50×$ 10^{9} $ t (39%) under thehigh trace gas scenario. The net emissions from allclearing of natural vegetation and of secondaryforests (including both biomass and soil fluxes) is2.0×$ 10^{9} $ t C, equivalent to 2.0–2.4×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. Adding emissions of0.4×$ 10^{9} $ t C from land-use category changesother than deforestation brings the total for land-usechange (not considering uptake of intact forest,recurrent burning of savannas or fires in intactforests) to 2.4×$ 10^{9} $ t C, equivalent to 2.4–2.9×$ 10^{9} $ t of $ CO_{2} $-equivalent carbon. The totalnet emission of carbon from the tropical land usesconsidered here (2.4×$ 10^{9} $ t C $ year^{-1} $)calculated for the 1981–1990 period is 50% higherthan the 1.6×$ 10^{9} $ t C $ year^{-1} $ value used by the Intergovernmental Panel on Climate Change. The inferred (= `missing') sink in the global carbonbudget is larger than previously thought. However,about half of the additional source suggested here maybe offset by a possible sink in uptake by Amazonianforests. Both alterations indicate that continueddeforestation would produce greater impact on globalcarbon emissions. The total net emission of carboncalculated here indicates a major global warmingimpact from tropical land uses, equivalent toapproximately 29% of the total anthropogenic emissionfrom fossil fuels and land-use change.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Warming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aboveground Biomass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomass Burning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forest Conversion</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Climatic change</subfield><subfield code="d">Kluwer Academic Publishers, 1977</subfield><subfield code="g">46(2000), 1-2 vom: Juli, Seite 115-158</subfield><subfield code="w">(DE-627)130479020</subfield><subfield code="w">(DE-600)751086-X</subfield><subfield code="w">(DE-576)016068610</subfield><subfield code="x">0165-0009</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2000</subfield><subfield code="g">number:1-2</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:115-158</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1005569915357</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-IBL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4028</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">RA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2000</subfield><subfield code="e">1-2</subfield><subfield code="c">07</subfield><subfield code="h">115-158</subfield></datafield></record></collection>
|
score |
7.399599 |