Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts
Abstract Rising northern hemispheric mean air temperatures reduce the amount of winter lake ice. These changes in lake ice cover must be understood in terms of resulting effects on lake ecosystems. Accurate predictions of lake ice phenology are essential to assess resulting impact. We applied the on...
Ausführliche Beschreibung
Autor*in: |
Bernhardt, Juliane [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer Science+Business Media B.V. 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Climatic change - Springer Netherlands, 1977, 112(2011), 3-4 vom: 28. Sept., Seite 791-817 |
---|---|
Übergeordnetes Werk: |
volume:112 ; year:2011 ; number:3-4 ; day:28 ; month:09 ; pages:791-817 |
Links: |
---|
DOI / URN: |
10.1007/s10584-011-0248-9 |
---|
Katalog-ID: |
OLC2062607415 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2062607415 | ||
003 | DE-627 | ||
005 | 20230503024223.0 | ||
007 | tu | ||
008 | 200819s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10584-011-0248-9 |2 doi | |
035 | |a (DE-627)OLC2062607415 | ||
035 | |a (DE-He213)s10584-011-0248-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 14 |2 ssgn | ||
084 | |a RA 1000 |q VZ |2 rvk | ||
100 | 1 | |a Bernhardt, Juliane |e verfasserin |4 aut | |
245 | 1 | 0 | |a Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media B.V. 2011 | ||
520 | |a Abstract Rising northern hemispheric mean air temperatures reduce the amount of winter lake ice. These changes in lake ice cover must be understood in terms of resulting effects on lake ecosystems. Accurate predictions of lake ice phenology are essential to assess resulting impact. We applied the one-dimensional physical lake model FLake to analyse past variability in ice cover timing, intensity and duration of Berlin-Brandenburg lakes. The observed ice phenology in two lakes in the period 1961–2007 was reconstructed by FLake reasonably well and with higher accuracy than by state-of-the-art linear regression models. Additional modelling results of FLake for 38 Berlin-Brandenburg lakes, observed in the winter of 2008/09, were quite satisfactory and adequately reproduced the effects of varying lake morphology and trophic state. Observations and model results showed that deeper and clearer lakes had more ice-free winters, later ice cover freezing and earlier ice cover thawing dates, resulting in shorter ice-covered periods and fewer ice-covered days than shallow and less clear lakes. The 1947–2007 model hindcasts were implemented using FLake for eight Berlin-Brandenburg lakes without ice phenology observations. Results demonstrated past trends of later ice start and earlier ice end, shorter ice cover duration and an increase in ice-free winters. | ||
650 | 4 | |a Shallow Lake | |
650 | 4 | |a Deep Lake | |
650 | 4 | |a Lake Depth | |
650 | 4 | |a Clear Lake | |
650 | 4 | |a Lake Model FLake | |
700 | 1 | |a Engelhardt, Christof |4 aut | |
700 | 1 | |a Kirillin, Georgiy |4 aut | |
700 | 1 | |a Matschullat, Jörg |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Climatic change |d Springer Netherlands, 1977 |g 112(2011), 3-4 vom: 28. Sept., Seite 791-817 |w (DE-627)130479020 |w (DE-600)751086-X |w (DE-576)016068610 |x 0165-0009 |7 nnns |
773 | 1 | 8 | |g volume:112 |g year:2011 |g number:3-4 |g day:28 |g month:09 |g pages:791-817 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10584-011-0248-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OLC-IBL | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4325 | ||
936 | r | v | |a RA 1000 |
951 | |a AR | ||
952 | |d 112 |j 2011 |e 3-4 |b 28 |c 09 |h 791-817 |
author_variant |
j b jb c e ce g k gk j m jm |
---|---|
matchkey_str |
article:01650009:2011----::aecpeooynelnrnebrfo1420osrai |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s10584-011-0248-9 doi (DE-627)OLC2062607415 (DE-He213)s10584-011-0248-9-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn RA 1000 VZ rvk Bernhardt, Juliane verfasserin aut Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Rising northern hemispheric mean air temperatures reduce the amount of winter lake ice. These changes in lake ice cover must be understood in terms of resulting effects on lake ecosystems. Accurate predictions of lake ice phenology are essential to assess resulting impact. We applied the one-dimensional physical lake model FLake to analyse past variability in ice cover timing, intensity and duration of Berlin-Brandenburg lakes. The observed ice phenology in two lakes in the period 1961–2007 was reconstructed by FLake reasonably well and with higher accuracy than by state-of-the-art linear regression models. Additional modelling results of FLake for 38 Berlin-Brandenburg lakes, observed in the winter of 2008/09, were quite satisfactory and adequately reproduced the effects of varying lake morphology and trophic state. Observations and model results showed that deeper and clearer lakes had more ice-free winters, later ice cover freezing and earlier ice cover thawing dates, resulting in shorter ice-covered periods and fewer ice-covered days than shallow and less clear lakes. The 1947–2007 model hindcasts were implemented using FLake for eight Berlin-Brandenburg lakes without ice phenology observations. Results demonstrated past trends of later ice start and earlier ice end, shorter ice cover duration and an increase in ice-free winters. Shallow Lake Deep Lake Lake Depth Clear Lake Lake Model FLake Engelhardt, Christof aut Kirillin, Georgiy aut Matschullat, Jörg aut Enthalten in Climatic change Springer Netherlands, 1977 112(2011), 3-4 vom: 28. Sept., Seite 791-817 (DE-627)130479020 (DE-600)751086-X (DE-576)016068610 0165-0009 nnns volume:112 year:2011 number:3-4 day:28 month:09 pages:791-817 https://doi.org/10.1007/s10584-011-0248-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-GEO SSG-OLC-IBL SSG-OPC-GGO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2003 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4325 RA 1000 AR 112 2011 3-4 28 09 791-817 |
spelling |
10.1007/s10584-011-0248-9 doi (DE-627)OLC2062607415 (DE-He213)s10584-011-0248-9-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn RA 1000 VZ rvk Bernhardt, Juliane verfasserin aut Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Rising northern hemispheric mean air temperatures reduce the amount of winter lake ice. These changes in lake ice cover must be understood in terms of resulting effects on lake ecosystems. Accurate predictions of lake ice phenology are essential to assess resulting impact. We applied the one-dimensional physical lake model FLake to analyse past variability in ice cover timing, intensity and duration of Berlin-Brandenburg lakes. The observed ice phenology in two lakes in the period 1961–2007 was reconstructed by FLake reasonably well and with higher accuracy than by state-of-the-art linear regression models. Additional modelling results of FLake for 38 Berlin-Brandenburg lakes, observed in the winter of 2008/09, were quite satisfactory and adequately reproduced the effects of varying lake morphology and trophic state. Observations and model results showed that deeper and clearer lakes had more ice-free winters, later ice cover freezing and earlier ice cover thawing dates, resulting in shorter ice-covered periods and fewer ice-covered days than shallow and less clear lakes. The 1947–2007 model hindcasts were implemented using FLake for eight Berlin-Brandenburg lakes without ice phenology observations. Results demonstrated past trends of later ice start and earlier ice end, shorter ice cover duration and an increase in ice-free winters. Shallow Lake Deep Lake Lake Depth Clear Lake Lake Model FLake Engelhardt, Christof aut Kirillin, Georgiy aut Matschullat, Jörg aut Enthalten in Climatic change Springer Netherlands, 1977 112(2011), 3-4 vom: 28. Sept., Seite 791-817 (DE-627)130479020 (DE-600)751086-X (DE-576)016068610 0165-0009 nnns volume:112 year:2011 number:3-4 day:28 month:09 pages:791-817 https://doi.org/10.1007/s10584-011-0248-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-GEO SSG-OLC-IBL SSG-OPC-GGO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2003 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4325 RA 1000 AR 112 2011 3-4 28 09 791-817 |
allfields_unstemmed |
10.1007/s10584-011-0248-9 doi (DE-627)OLC2062607415 (DE-He213)s10584-011-0248-9-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn RA 1000 VZ rvk Bernhardt, Juliane verfasserin aut Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Rising northern hemispheric mean air temperatures reduce the amount of winter lake ice. These changes in lake ice cover must be understood in terms of resulting effects on lake ecosystems. Accurate predictions of lake ice phenology are essential to assess resulting impact. We applied the one-dimensional physical lake model FLake to analyse past variability in ice cover timing, intensity and duration of Berlin-Brandenburg lakes. The observed ice phenology in two lakes in the period 1961–2007 was reconstructed by FLake reasonably well and with higher accuracy than by state-of-the-art linear regression models. Additional modelling results of FLake for 38 Berlin-Brandenburg lakes, observed in the winter of 2008/09, were quite satisfactory and adequately reproduced the effects of varying lake morphology and trophic state. Observations and model results showed that deeper and clearer lakes had more ice-free winters, later ice cover freezing and earlier ice cover thawing dates, resulting in shorter ice-covered periods and fewer ice-covered days than shallow and less clear lakes. The 1947–2007 model hindcasts were implemented using FLake for eight Berlin-Brandenburg lakes without ice phenology observations. Results demonstrated past trends of later ice start and earlier ice end, shorter ice cover duration and an increase in ice-free winters. Shallow Lake Deep Lake Lake Depth Clear Lake Lake Model FLake Engelhardt, Christof aut Kirillin, Georgiy aut Matschullat, Jörg aut Enthalten in Climatic change Springer Netherlands, 1977 112(2011), 3-4 vom: 28. Sept., Seite 791-817 (DE-627)130479020 (DE-600)751086-X (DE-576)016068610 0165-0009 nnns volume:112 year:2011 number:3-4 day:28 month:09 pages:791-817 https://doi.org/10.1007/s10584-011-0248-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-GEO SSG-OLC-IBL SSG-OPC-GGO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2003 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4325 RA 1000 AR 112 2011 3-4 28 09 791-817 |
allfieldsGer |
10.1007/s10584-011-0248-9 doi (DE-627)OLC2062607415 (DE-He213)s10584-011-0248-9-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn RA 1000 VZ rvk Bernhardt, Juliane verfasserin aut Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Rising northern hemispheric mean air temperatures reduce the amount of winter lake ice. These changes in lake ice cover must be understood in terms of resulting effects on lake ecosystems. Accurate predictions of lake ice phenology are essential to assess resulting impact. We applied the one-dimensional physical lake model FLake to analyse past variability in ice cover timing, intensity and duration of Berlin-Brandenburg lakes. The observed ice phenology in two lakes in the period 1961–2007 was reconstructed by FLake reasonably well and with higher accuracy than by state-of-the-art linear regression models. Additional modelling results of FLake for 38 Berlin-Brandenburg lakes, observed in the winter of 2008/09, were quite satisfactory and adequately reproduced the effects of varying lake morphology and trophic state. Observations and model results showed that deeper and clearer lakes had more ice-free winters, later ice cover freezing and earlier ice cover thawing dates, resulting in shorter ice-covered periods and fewer ice-covered days than shallow and less clear lakes. The 1947–2007 model hindcasts were implemented using FLake for eight Berlin-Brandenburg lakes without ice phenology observations. Results demonstrated past trends of later ice start and earlier ice end, shorter ice cover duration and an increase in ice-free winters. Shallow Lake Deep Lake Lake Depth Clear Lake Lake Model FLake Engelhardt, Christof aut Kirillin, Georgiy aut Matschullat, Jörg aut Enthalten in Climatic change Springer Netherlands, 1977 112(2011), 3-4 vom: 28. Sept., Seite 791-817 (DE-627)130479020 (DE-600)751086-X (DE-576)016068610 0165-0009 nnns volume:112 year:2011 number:3-4 day:28 month:09 pages:791-817 https://doi.org/10.1007/s10584-011-0248-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-GEO SSG-OLC-IBL SSG-OPC-GGO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2003 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4325 RA 1000 AR 112 2011 3-4 28 09 791-817 |
allfieldsSound |
10.1007/s10584-011-0248-9 doi (DE-627)OLC2062607415 (DE-He213)s10584-011-0248-9-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn RA 1000 VZ rvk Bernhardt, Juliane verfasserin aut Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Rising northern hemispheric mean air temperatures reduce the amount of winter lake ice. These changes in lake ice cover must be understood in terms of resulting effects on lake ecosystems. Accurate predictions of lake ice phenology are essential to assess resulting impact. We applied the one-dimensional physical lake model FLake to analyse past variability in ice cover timing, intensity and duration of Berlin-Brandenburg lakes. The observed ice phenology in two lakes in the period 1961–2007 was reconstructed by FLake reasonably well and with higher accuracy than by state-of-the-art linear regression models. Additional modelling results of FLake for 38 Berlin-Brandenburg lakes, observed in the winter of 2008/09, were quite satisfactory and adequately reproduced the effects of varying lake morphology and trophic state. Observations and model results showed that deeper and clearer lakes had more ice-free winters, later ice cover freezing and earlier ice cover thawing dates, resulting in shorter ice-covered periods and fewer ice-covered days than shallow and less clear lakes. The 1947–2007 model hindcasts were implemented using FLake for eight Berlin-Brandenburg lakes without ice phenology observations. Results demonstrated past trends of later ice start and earlier ice end, shorter ice cover duration and an increase in ice-free winters. Shallow Lake Deep Lake Lake Depth Clear Lake Lake Model FLake Engelhardt, Christof aut Kirillin, Georgiy aut Matschullat, Jörg aut Enthalten in Climatic change Springer Netherlands, 1977 112(2011), 3-4 vom: 28. Sept., Seite 791-817 (DE-627)130479020 (DE-600)751086-X (DE-576)016068610 0165-0009 nnns volume:112 year:2011 number:3-4 day:28 month:09 pages:791-817 https://doi.org/10.1007/s10584-011-0248-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-GEO SSG-OLC-IBL SSG-OPC-GGO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2003 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4325 RA 1000 AR 112 2011 3-4 28 09 791-817 |
language |
English |
source |
Enthalten in Climatic change 112(2011), 3-4 vom: 28. Sept., Seite 791-817 volume:112 year:2011 number:3-4 day:28 month:09 pages:791-817 |
sourceStr |
Enthalten in Climatic change 112(2011), 3-4 vom: 28. Sept., Seite 791-817 volume:112 year:2011 number:3-4 day:28 month:09 pages:791-817 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Shallow Lake Deep Lake Lake Depth Clear Lake Lake Model FLake |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Climatic change |
authorswithroles_txt_mv |
Bernhardt, Juliane @@aut@@ Engelhardt, Christof @@aut@@ Kirillin, Georgiy @@aut@@ Matschullat, Jörg @@aut@@ |
publishDateDaySort_date |
2011-09-28T00:00:00Z |
hierarchy_top_id |
130479020 |
dewey-sort |
3550 |
id |
OLC2062607415 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062607415</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503024223.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10584-011-0248-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062607415</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10584-011-0248-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RA 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bernhardt, Juliane</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Rising northern hemispheric mean air temperatures reduce the amount of winter lake ice. These changes in lake ice cover must be understood in terms of resulting effects on lake ecosystems. Accurate predictions of lake ice phenology are essential to assess resulting impact. We applied the one-dimensional physical lake model FLake to analyse past variability in ice cover timing, intensity and duration of Berlin-Brandenburg lakes. The observed ice phenology in two lakes in the period 1961–2007 was reconstructed by FLake reasonably well and with higher accuracy than by state-of-the-art linear regression models. Additional modelling results of FLake for 38 Berlin-Brandenburg lakes, observed in the winter of 2008/09, were quite satisfactory and adequately reproduced the effects of varying lake morphology and trophic state. Observations and model results showed that deeper and clearer lakes had more ice-free winters, later ice cover freezing and earlier ice cover thawing dates, resulting in shorter ice-covered periods and fewer ice-covered days than shallow and less clear lakes. The 1947–2007 model hindcasts were implemented using FLake for eight Berlin-Brandenburg lakes without ice phenology observations. Results demonstrated past trends of later ice start and earlier ice end, shorter ice cover duration and an increase in ice-free winters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shallow Lake</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep Lake</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lake Depth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clear Lake</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lake Model FLake</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Engelhardt, Christof</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirillin, Georgiy</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matschullat, Jörg</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Climatic change</subfield><subfield code="d">Springer Netherlands, 1977</subfield><subfield code="g">112(2011), 3-4 vom: 28. Sept., Seite 791-817</subfield><subfield code="w">(DE-627)130479020</subfield><subfield code="w">(DE-600)751086-X</subfield><subfield code="w">(DE-576)016068610</subfield><subfield code="x">0165-0009</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:112</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:28</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:791-817</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10584-011-0248-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-IBL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">RA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">112</subfield><subfield code="j">2011</subfield><subfield code="e">3-4</subfield><subfield code="b">28</subfield><subfield code="c">09</subfield><subfield code="h">791-817</subfield></datafield></record></collection>
|
author |
Bernhardt, Juliane |
spellingShingle |
Bernhardt, Juliane ddc 550 ssgn 14 rvk RA 1000 misc Shallow Lake misc Deep Lake misc Lake Depth misc Clear Lake misc Lake Model FLake Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts |
authorStr |
Bernhardt, Juliane |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130479020 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0165-0009 |
topic_title |
550 VZ 14 ssgn RA 1000 VZ rvk Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts Shallow Lake Deep Lake Lake Depth Clear Lake Lake Model FLake |
topic |
ddc 550 ssgn 14 rvk RA 1000 misc Shallow Lake misc Deep Lake misc Lake Depth misc Clear Lake misc Lake Model FLake |
topic_unstemmed |
ddc 550 ssgn 14 rvk RA 1000 misc Shallow Lake misc Deep Lake misc Lake Depth misc Clear Lake misc Lake Model FLake |
topic_browse |
ddc 550 ssgn 14 rvk RA 1000 misc Shallow Lake misc Deep Lake misc Lake Depth misc Clear Lake misc Lake Model FLake |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Climatic change |
hierarchy_parent_id |
130479020 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Climatic change |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130479020 (DE-600)751086-X (DE-576)016068610 |
title |
Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts |
ctrlnum |
(DE-627)OLC2062607415 (DE-He213)s10584-011-0248-9-p |
title_full |
Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts |
author_sort |
Bernhardt, Juliane |
journal |
Climatic change |
journalStr |
Climatic change |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
791 |
author_browse |
Bernhardt, Juliane Engelhardt, Christof Kirillin, Georgiy Matschullat, Jörg |
container_volume |
112 |
class |
550 VZ 14 ssgn RA 1000 VZ rvk |
format_se |
Aufsätze |
author-letter |
Bernhardt, Juliane |
doi_str_mv |
10.1007/s10584-011-0248-9 |
dewey-full |
550 |
title_sort |
lake ice phenology in berlin-brandenburg from 1947–2007: observations and model hindcasts |
title_auth |
Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts |
abstract |
Abstract Rising northern hemispheric mean air temperatures reduce the amount of winter lake ice. These changes in lake ice cover must be understood in terms of resulting effects on lake ecosystems. Accurate predictions of lake ice phenology are essential to assess resulting impact. We applied the one-dimensional physical lake model FLake to analyse past variability in ice cover timing, intensity and duration of Berlin-Brandenburg lakes. The observed ice phenology in two lakes in the period 1961–2007 was reconstructed by FLake reasonably well and with higher accuracy than by state-of-the-art linear regression models. Additional modelling results of FLake for 38 Berlin-Brandenburg lakes, observed in the winter of 2008/09, were quite satisfactory and adequately reproduced the effects of varying lake morphology and trophic state. Observations and model results showed that deeper and clearer lakes had more ice-free winters, later ice cover freezing and earlier ice cover thawing dates, resulting in shorter ice-covered periods and fewer ice-covered days than shallow and less clear lakes. The 1947–2007 model hindcasts were implemented using FLake for eight Berlin-Brandenburg lakes without ice phenology observations. Results demonstrated past trends of later ice start and earlier ice end, shorter ice cover duration and an increase in ice-free winters. © Springer Science+Business Media B.V. 2011 |
abstractGer |
Abstract Rising northern hemispheric mean air temperatures reduce the amount of winter lake ice. These changes in lake ice cover must be understood in terms of resulting effects on lake ecosystems. Accurate predictions of lake ice phenology are essential to assess resulting impact. We applied the one-dimensional physical lake model FLake to analyse past variability in ice cover timing, intensity and duration of Berlin-Brandenburg lakes. The observed ice phenology in two lakes in the period 1961–2007 was reconstructed by FLake reasonably well and with higher accuracy than by state-of-the-art linear regression models. Additional modelling results of FLake for 38 Berlin-Brandenburg lakes, observed in the winter of 2008/09, were quite satisfactory and adequately reproduced the effects of varying lake morphology and trophic state. Observations and model results showed that deeper and clearer lakes had more ice-free winters, later ice cover freezing and earlier ice cover thawing dates, resulting in shorter ice-covered periods and fewer ice-covered days than shallow and less clear lakes. The 1947–2007 model hindcasts were implemented using FLake for eight Berlin-Brandenburg lakes without ice phenology observations. Results demonstrated past trends of later ice start and earlier ice end, shorter ice cover duration and an increase in ice-free winters. © Springer Science+Business Media B.V. 2011 |
abstract_unstemmed |
Abstract Rising northern hemispheric mean air temperatures reduce the amount of winter lake ice. These changes in lake ice cover must be understood in terms of resulting effects on lake ecosystems. Accurate predictions of lake ice phenology are essential to assess resulting impact. We applied the one-dimensional physical lake model FLake to analyse past variability in ice cover timing, intensity and duration of Berlin-Brandenburg lakes. The observed ice phenology in two lakes in the period 1961–2007 was reconstructed by FLake reasonably well and with higher accuracy than by state-of-the-art linear regression models. Additional modelling results of FLake for 38 Berlin-Brandenburg lakes, observed in the winter of 2008/09, were quite satisfactory and adequately reproduced the effects of varying lake morphology and trophic state. Observations and model results showed that deeper and clearer lakes had more ice-free winters, later ice cover freezing and earlier ice cover thawing dates, resulting in shorter ice-covered periods and fewer ice-covered days than shallow and less clear lakes. The 1947–2007 model hindcasts were implemented using FLake for eight Berlin-Brandenburg lakes without ice phenology observations. Results demonstrated past trends of later ice start and earlier ice end, shorter ice cover duration and an increase in ice-free winters. © Springer Science+Business Media B.V. 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-GEO SSG-OLC-IBL SSG-OPC-GGO GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2003 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4305 GBV_ILN_4325 |
container_issue |
3-4 |
title_short |
Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts |
url |
https://doi.org/10.1007/s10584-011-0248-9 |
remote_bool |
false |
author2 |
Engelhardt, Christof Kirillin, Georgiy Matschullat, Jörg |
author2Str |
Engelhardt, Christof Kirillin, Georgiy Matschullat, Jörg |
ppnlink |
130479020 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10584-011-0248-9 |
up_date |
2024-07-03T15:44:37.517Z |
_version_ |
1803573240812011520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2062607415</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503024223.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10584-011-0248-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2062607415</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10584-011-0248-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RA 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bernhardt, Juliane</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Rising northern hemispheric mean air temperatures reduce the amount of winter lake ice. These changes in lake ice cover must be understood in terms of resulting effects on lake ecosystems. Accurate predictions of lake ice phenology are essential to assess resulting impact. We applied the one-dimensional physical lake model FLake to analyse past variability in ice cover timing, intensity and duration of Berlin-Brandenburg lakes. The observed ice phenology in two lakes in the period 1961–2007 was reconstructed by FLake reasonably well and with higher accuracy than by state-of-the-art linear regression models. Additional modelling results of FLake for 38 Berlin-Brandenburg lakes, observed in the winter of 2008/09, were quite satisfactory and adequately reproduced the effects of varying lake morphology and trophic state. Observations and model results showed that deeper and clearer lakes had more ice-free winters, later ice cover freezing and earlier ice cover thawing dates, resulting in shorter ice-covered periods and fewer ice-covered days than shallow and less clear lakes. The 1947–2007 model hindcasts were implemented using FLake for eight Berlin-Brandenburg lakes without ice phenology observations. Results demonstrated past trends of later ice start and earlier ice end, shorter ice cover duration and an increase in ice-free winters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shallow Lake</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep Lake</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lake Depth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clear Lake</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lake Model FLake</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Engelhardt, Christof</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirillin, Georgiy</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matschullat, Jörg</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Climatic change</subfield><subfield code="d">Springer Netherlands, 1977</subfield><subfield code="g">112(2011), 3-4 vom: 28. Sept., Seite 791-817</subfield><subfield code="w">(DE-627)130479020</subfield><subfield code="w">(DE-600)751086-X</subfield><subfield code="w">(DE-576)016068610</subfield><subfield code="x">0165-0009</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:112</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:28</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:791-817</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10584-011-0248-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-IBL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">RA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">112</subfield><subfield code="j">2011</subfield><subfield code="e">3-4</subfield><subfield code="b">28</subfield><subfield code="c">09</subfield><subfield code="h">791-817</subfield></datafield></record></collection>
|
score |
7.399357 |