Convex but not Strictly Convex Central Configurations
Abstract Central configurations of the n-body problem have been studied for more than 200 years since the pioneer works of Euler and Lagrange. In this article we study convex central configurations which are not strictly convex. We give explicit examples of such configurations in both planar and spa...
Ausführliche Beschreibung
Autor*in: |
Fernandes, Antonio Carlos [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of dynamics and differential equations - Springer US, 1989, 30(2017), 4 vom: 19. Mai, Seite 1427-1438 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2017 ; number:4 ; day:19 ; month:05 ; pages:1427-1438 |
Links: |
---|
DOI / URN: |
10.1007/s10884-017-9596-0 |
---|
Katalog-ID: |
OLC206346166X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC206346166X | ||
003 | DE-627 | ||
005 | 20230503135851.0 | ||
007 | tu | ||
008 | 200819s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10884-017-9596-0 |2 doi | |
035 | |a (DE-627)OLC206346166X | ||
035 | |a (DE-He213)s10884-017-9596-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Fernandes, Antonio Carlos |e verfasserin |4 aut | |
245 | 1 | 0 | |a Convex but not Strictly Convex Central Configurations |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2017 | ||
520 | |a Abstract Central configurations of the n-body problem have been studied for more than 200 years since the pioneer works of Euler and Lagrange. In this article we study convex central configurations which are not strictly convex. We give explicit examples of such configurations in both planar and spatial n-body problems. Particularly, in the spatial case, we consider regular polyhedra with bodies of same mass m at the vertices and bodies of same mass M at the middle points of each edge. In this setting we prove that the cube is the unique regular polyhedron such that this construction leads to a convex central configuration which is not strictly convex. | ||
650 | 4 | |a Central configuration | |
650 | 4 | |a -body problem | |
650 | 4 | |a Convex central configuration | |
650 | 4 | |a Stacked central configuration | |
700 | 1 | |a Garcia, Braulio Augusto |4 aut | |
700 | 1 | |a Mello, Luis Fernando |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of dynamics and differential equations |d Springer US, 1989 |g 30(2017), 4 vom: 19. Mai, Seite 1427-1438 |w (DE-627)165666455 |w (DE-600)1008261-X |w (DE-576)023042591 |x 1040-7294 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2017 |g number:4 |g day:19 |g month:05 |g pages:1427-1438 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10884-017-9596-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4126 | ||
951 | |a AR | ||
952 | |d 30 |j 2017 |e 4 |b 19 |c 05 |h 1427-1438 |
author_variant |
a c f ac acf b a g ba bag l f m lf lfm |
---|---|
matchkey_str |
article:10407294:2017----::ovxunttityovxeta |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s10884-017-9596-0 doi (DE-627)OLC206346166X (DE-He213)s10884-017-9596-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Fernandes, Antonio Carlos verfasserin aut Convex but not Strictly Convex Central Configurations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Central configurations of the n-body problem have been studied for more than 200 years since the pioneer works of Euler and Lagrange. In this article we study convex central configurations which are not strictly convex. We give explicit examples of such configurations in both planar and spatial n-body problems. Particularly, in the spatial case, we consider regular polyhedra with bodies of same mass m at the vertices and bodies of same mass M at the middle points of each edge. In this setting we prove that the cube is the unique regular polyhedron such that this construction leads to a convex central configuration which is not strictly convex. Central configuration -body problem Convex central configuration Stacked central configuration Garcia, Braulio Augusto aut Mello, Luis Fernando aut Enthalten in Journal of dynamics and differential equations Springer US, 1989 30(2017), 4 vom: 19. Mai, Seite 1427-1438 (DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 1040-7294 nnns volume:30 year:2017 number:4 day:19 month:05 pages:1427-1438 https://doi.org/10.1007/s10884-017-9596-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 AR 30 2017 4 19 05 1427-1438 |
spelling |
10.1007/s10884-017-9596-0 doi (DE-627)OLC206346166X (DE-He213)s10884-017-9596-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Fernandes, Antonio Carlos verfasserin aut Convex but not Strictly Convex Central Configurations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Central configurations of the n-body problem have been studied for more than 200 years since the pioneer works of Euler and Lagrange. In this article we study convex central configurations which are not strictly convex. We give explicit examples of such configurations in both planar and spatial n-body problems. Particularly, in the spatial case, we consider regular polyhedra with bodies of same mass m at the vertices and bodies of same mass M at the middle points of each edge. In this setting we prove that the cube is the unique regular polyhedron such that this construction leads to a convex central configuration which is not strictly convex. Central configuration -body problem Convex central configuration Stacked central configuration Garcia, Braulio Augusto aut Mello, Luis Fernando aut Enthalten in Journal of dynamics and differential equations Springer US, 1989 30(2017), 4 vom: 19. Mai, Seite 1427-1438 (DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 1040-7294 nnns volume:30 year:2017 number:4 day:19 month:05 pages:1427-1438 https://doi.org/10.1007/s10884-017-9596-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 AR 30 2017 4 19 05 1427-1438 |
allfields_unstemmed |
10.1007/s10884-017-9596-0 doi (DE-627)OLC206346166X (DE-He213)s10884-017-9596-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Fernandes, Antonio Carlos verfasserin aut Convex but not Strictly Convex Central Configurations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Central configurations of the n-body problem have been studied for more than 200 years since the pioneer works of Euler and Lagrange. In this article we study convex central configurations which are not strictly convex. We give explicit examples of such configurations in both planar and spatial n-body problems. Particularly, in the spatial case, we consider regular polyhedra with bodies of same mass m at the vertices and bodies of same mass M at the middle points of each edge. In this setting we prove that the cube is the unique regular polyhedron such that this construction leads to a convex central configuration which is not strictly convex. Central configuration -body problem Convex central configuration Stacked central configuration Garcia, Braulio Augusto aut Mello, Luis Fernando aut Enthalten in Journal of dynamics and differential equations Springer US, 1989 30(2017), 4 vom: 19. Mai, Seite 1427-1438 (DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 1040-7294 nnns volume:30 year:2017 number:4 day:19 month:05 pages:1427-1438 https://doi.org/10.1007/s10884-017-9596-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 AR 30 2017 4 19 05 1427-1438 |
allfieldsGer |
10.1007/s10884-017-9596-0 doi (DE-627)OLC206346166X (DE-He213)s10884-017-9596-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Fernandes, Antonio Carlos verfasserin aut Convex but not Strictly Convex Central Configurations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Central configurations of the n-body problem have been studied for more than 200 years since the pioneer works of Euler and Lagrange. In this article we study convex central configurations which are not strictly convex. We give explicit examples of such configurations in both planar and spatial n-body problems. Particularly, in the spatial case, we consider regular polyhedra with bodies of same mass m at the vertices and bodies of same mass M at the middle points of each edge. In this setting we prove that the cube is the unique regular polyhedron such that this construction leads to a convex central configuration which is not strictly convex. Central configuration -body problem Convex central configuration Stacked central configuration Garcia, Braulio Augusto aut Mello, Luis Fernando aut Enthalten in Journal of dynamics and differential equations Springer US, 1989 30(2017), 4 vom: 19. Mai, Seite 1427-1438 (DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 1040-7294 nnns volume:30 year:2017 number:4 day:19 month:05 pages:1427-1438 https://doi.org/10.1007/s10884-017-9596-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 AR 30 2017 4 19 05 1427-1438 |
allfieldsSound |
10.1007/s10884-017-9596-0 doi (DE-627)OLC206346166X (DE-He213)s10884-017-9596-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Fernandes, Antonio Carlos verfasserin aut Convex but not Strictly Convex Central Configurations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Central configurations of the n-body problem have been studied for more than 200 years since the pioneer works of Euler and Lagrange. In this article we study convex central configurations which are not strictly convex. We give explicit examples of such configurations in both planar and spatial n-body problems. Particularly, in the spatial case, we consider regular polyhedra with bodies of same mass m at the vertices and bodies of same mass M at the middle points of each edge. In this setting we prove that the cube is the unique regular polyhedron such that this construction leads to a convex central configuration which is not strictly convex. Central configuration -body problem Convex central configuration Stacked central configuration Garcia, Braulio Augusto aut Mello, Luis Fernando aut Enthalten in Journal of dynamics and differential equations Springer US, 1989 30(2017), 4 vom: 19. Mai, Seite 1427-1438 (DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 1040-7294 nnns volume:30 year:2017 number:4 day:19 month:05 pages:1427-1438 https://doi.org/10.1007/s10884-017-9596-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 AR 30 2017 4 19 05 1427-1438 |
language |
English |
source |
Enthalten in Journal of dynamics and differential equations 30(2017), 4 vom: 19. Mai, Seite 1427-1438 volume:30 year:2017 number:4 day:19 month:05 pages:1427-1438 |
sourceStr |
Enthalten in Journal of dynamics and differential equations 30(2017), 4 vom: 19. Mai, Seite 1427-1438 volume:30 year:2017 number:4 day:19 month:05 pages:1427-1438 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Central configuration -body problem Convex central configuration Stacked central configuration |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of dynamics and differential equations |
authorswithroles_txt_mv |
Fernandes, Antonio Carlos @@aut@@ Garcia, Braulio Augusto @@aut@@ Mello, Luis Fernando @@aut@@ |
publishDateDaySort_date |
2017-05-19T00:00:00Z |
hierarchy_top_id |
165666455 |
dewey-sort |
3510 |
id |
OLC206346166X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206346166X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503135851.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10884-017-9596-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206346166X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10884-017-9596-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fernandes, Antonio Carlos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convex but not Strictly Convex Central Configurations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Central configurations of the n-body problem have been studied for more than 200 years since the pioneer works of Euler and Lagrange. In this article we study convex central configurations which are not strictly convex. We give explicit examples of such configurations in both planar and spatial n-body problems. Particularly, in the spatial case, we consider regular polyhedra with bodies of same mass m at the vertices and bodies of same mass M at the middle points of each edge. In this setting we prove that the cube is the unique regular polyhedron such that this construction leads to a convex central configuration which is not strictly convex.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Central configuration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-body problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex central configuration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stacked central configuration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garcia, Braulio Augusto</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mello, Luis Fernando</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of dynamics and differential equations</subfield><subfield code="d">Springer US, 1989</subfield><subfield code="g">30(2017), 4 vom: 19. Mai, Seite 1427-1438</subfield><subfield code="w">(DE-627)165666455</subfield><subfield code="w">(DE-600)1008261-X</subfield><subfield code="w">(DE-576)023042591</subfield><subfield code="x">1040-7294</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:4</subfield><subfield code="g">day:19</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1427-1438</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10884-017-9596-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2017</subfield><subfield code="e">4</subfield><subfield code="b">19</subfield><subfield code="c">05</subfield><subfield code="h">1427-1438</subfield></datafield></record></collection>
|
author |
Fernandes, Antonio Carlos |
spellingShingle |
Fernandes, Antonio Carlos ddc 510 ssgn 17,1 misc Central configuration misc -body problem misc Convex central configuration misc Stacked central configuration Convex but not Strictly Convex Central Configurations |
authorStr |
Fernandes, Antonio Carlos |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165666455 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1040-7294 |
topic_title |
510 VZ 17,1 ssgn Convex but not Strictly Convex Central Configurations Central configuration -body problem Convex central configuration Stacked central configuration |
topic |
ddc 510 ssgn 17,1 misc Central configuration misc -body problem misc Convex central configuration misc Stacked central configuration |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Central configuration misc -body problem misc Convex central configuration misc Stacked central configuration |
topic_browse |
ddc 510 ssgn 17,1 misc Central configuration misc -body problem misc Convex central configuration misc Stacked central configuration |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of dynamics and differential equations |
hierarchy_parent_id |
165666455 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of dynamics and differential equations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 |
title |
Convex but not Strictly Convex Central Configurations |
ctrlnum |
(DE-627)OLC206346166X (DE-He213)s10884-017-9596-0-p |
title_full |
Convex but not Strictly Convex Central Configurations |
author_sort |
Fernandes, Antonio Carlos |
journal |
Journal of dynamics and differential equations |
journalStr |
Journal of dynamics and differential equations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1427 |
author_browse |
Fernandes, Antonio Carlos Garcia, Braulio Augusto Mello, Luis Fernando |
container_volume |
30 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Fernandes, Antonio Carlos |
doi_str_mv |
10.1007/s10884-017-9596-0 |
dewey-full |
510 |
title_sort |
convex but not strictly convex central configurations |
title_auth |
Convex but not Strictly Convex Central Configurations |
abstract |
Abstract Central configurations of the n-body problem have been studied for more than 200 years since the pioneer works of Euler and Lagrange. In this article we study convex central configurations which are not strictly convex. We give explicit examples of such configurations in both planar and spatial n-body problems. Particularly, in the spatial case, we consider regular polyhedra with bodies of same mass m at the vertices and bodies of same mass M at the middle points of each edge. In this setting we prove that the cube is the unique regular polyhedron such that this construction leads to a convex central configuration which is not strictly convex. © Springer Science+Business Media New York 2017 |
abstractGer |
Abstract Central configurations of the n-body problem have been studied for more than 200 years since the pioneer works of Euler and Lagrange. In this article we study convex central configurations which are not strictly convex. We give explicit examples of such configurations in both planar and spatial n-body problems. Particularly, in the spatial case, we consider regular polyhedra with bodies of same mass m at the vertices and bodies of same mass M at the middle points of each edge. In this setting we prove that the cube is the unique regular polyhedron such that this construction leads to a convex central configuration which is not strictly convex. © Springer Science+Business Media New York 2017 |
abstract_unstemmed |
Abstract Central configurations of the n-body problem have been studied for more than 200 years since the pioneer works of Euler and Lagrange. In this article we study convex central configurations which are not strictly convex. We give explicit examples of such configurations in both planar and spatial n-body problems. Particularly, in the spatial case, we consider regular polyhedra with bodies of same mass m at the vertices and bodies of same mass M at the middle points of each edge. In this setting we prove that the cube is the unique regular polyhedron such that this construction leads to a convex central configuration which is not strictly convex. © Springer Science+Business Media New York 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 |
container_issue |
4 |
title_short |
Convex but not Strictly Convex Central Configurations |
url |
https://doi.org/10.1007/s10884-017-9596-0 |
remote_bool |
false |
author2 |
Garcia, Braulio Augusto Mello, Luis Fernando |
author2Str |
Garcia, Braulio Augusto Mello, Luis Fernando |
ppnlink |
165666455 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10884-017-9596-0 |
up_date |
2024-07-03T19:07:51.671Z |
_version_ |
1803586027307139072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206346166X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503135851.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10884-017-9596-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206346166X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10884-017-9596-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fernandes, Antonio Carlos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convex but not Strictly Convex Central Configurations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Central configurations of the n-body problem have been studied for more than 200 years since the pioneer works of Euler and Lagrange. In this article we study convex central configurations which are not strictly convex. We give explicit examples of such configurations in both planar and spatial n-body problems. Particularly, in the spatial case, we consider regular polyhedra with bodies of same mass m at the vertices and bodies of same mass M at the middle points of each edge. In this setting we prove that the cube is the unique regular polyhedron such that this construction leads to a convex central configuration which is not strictly convex.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Central configuration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-body problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex central configuration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stacked central configuration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garcia, Braulio Augusto</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mello, Luis Fernando</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of dynamics and differential equations</subfield><subfield code="d">Springer US, 1989</subfield><subfield code="g">30(2017), 4 vom: 19. Mai, Seite 1427-1438</subfield><subfield code="w">(DE-627)165666455</subfield><subfield code="w">(DE-600)1008261-X</subfield><subfield code="w">(DE-576)023042591</subfield><subfield code="x">1040-7294</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:4</subfield><subfield code="g">day:19</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1427-1438</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10884-017-9596-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2017</subfield><subfield code="e">4</subfield><subfield code="b">19</subfield><subfield code="c">05</subfield><subfield code="h">1427-1438</subfield></datafield></record></collection>
|
score |
7.40275 |