Quantum tricriticality in transverse Ising-like systems
Abstract The quantum tricriticality of d-dimensional transverse Ising-like systems is studied by means of a perturbative renormalization group approach focusing on static susceptibility. This allows us to obtain the phase diagram for 3 ≤ d < 4, with a clear location of the critical lines ending i...
Ausführliche Beschreibung
Autor*in: |
Mercaldo, M. T. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: The European physical journal / B - Springer-Verlag, 1998, 84(2011), 3 vom: 23. Nov., Seite 371-379 |
---|---|
Übergeordnetes Werk: |
volume:84 ; year:2011 ; number:3 ; day:23 ; month:11 ; pages:371-379 |
Links: |
---|
DOI / URN: |
10.1140/epjb/e2011-20621-0 |
---|
Katalog-ID: |
OLC2065674210 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2065674210 | ||
003 | DE-627 | ||
005 | 20230502163431.0 | ||
007 | tu | ||
008 | 200819s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1140/epjb/e2011-20621-0 |2 doi | |
035 | |a (DE-627)OLC2065674210 | ||
035 | |a (DE-He213)e2011-20621-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
084 | |a UA 3858.B |q VZ |2 rvk | ||
100 | 1 | |a Mercaldo, M. T. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantum tricriticality in transverse Ising-like systems |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011 | ||
520 | |a Abstract The quantum tricriticality of d-dimensional transverse Ising-like systems is studied by means of a perturbative renormalization group approach focusing on static susceptibility. This allows us to obtain the phase diagram for 3 ≤ d < 4, with a clear location of the critical lines ending in the conventional quantum critical points and in the quantum tricritical one, and of the tricritical line for temperature T ≥ 0. We determine also the critical and the tricritical shift exponents close to the corresponding ground state instabilities. Remarkably, we find a tricritical shift exponent identical to that found in the conventional quantum criticality and, by approaching the quantum tricritical point increasing the non-thermal control parameter r, a crossover of the quantum critical shift exponents from the conventional value φ = 1/(d − 1) to the new one φ = 1/2(d − 1). Besides, the projection in the (r,T)-plane of the phase boundary ending in the quantum tricritical point and crossovers in the quantum tricritical region appear quite similar to those found close to an usual quantum critical point. Another feature of experimental interest is that the amplitude of the Wilsonian classical critical region around this peculiar critical line is sensibly smaller than that expected in the quantum critical scenario. This suggests that the quantum tricriticality is essentially governed by mean-field critical exponents, renormalized by the shift exponent φ = 1/2(d − 1) in the quantum tricritical region. | ||
650 | 4 | |a Renormalization Group | |
650 | 4 | |a Critical Line | |
650 | 4 | |a Quantum Critical Point | |
650 | 4 | |a Tricritical Point | |
650 | 4 | |a Continuous Phase Transition | |
700 | 1 | |a Rabuffo, I. |4 aut | |
700 | 1 | |a Naddeo, A. |4 aut | |
700 | 1 | |a Caramico D’Auria, A. |4 aut | |
700 | 1 | |a De Cesare, L. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The European physical journal / B |d Springer-Verlag, 1998 |g 84(2011), 3 vom: 23. Nov., Seite 371-379 |w (DE-627)235469769 |w (DE-600)1397768-4 |w (DE-576)061879142 |x 1434-6028 |7 nnns |
773 | 1 | 8 | |g volume:84 |g year:2011 |g number:3 |g day:23 |g month:11 |g pages:371-379 |
856 | 4 | 1 | |u https://doi.org/10.1140/epjb/e2011-20621-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2185 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a UA 3858.B |
951 | |a AR | ||
952 | |d 84 |j 2011 |e 3 |b 23 |c 11 |h 371-379 |
author_variant |
m t m mt mtm i r ir a n an d a c da dac c l d cl cld |
---|---|
matchkey_str |
article:14346028:2011----::unutirtcltitasesii |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1140/epjb/e2011-20621-0 doi (DE-627)OLC2065674210 (DE-He213)e2011-20621-0-p DE-627 ger DE-627 rakwb eng 530 VZ 530 VZ UA 3858.B VZ rvk Mercaldo, M. T. verfasserin aut Quantum tricriticality in transverse Ising-like systems 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011 Abstract The quantum tricriticality of d-dimensional transverse Ising-like systems is studied by means of a perturbative renormalization group approach focusing on static susceptibility. This allows us to obtain the phase diagram for 3 ≤ d < 4, with a clear location of the critical lines ending in the conventional quantum critical points and in the quantum tricritical one, and of the tricritical line for temperature T ≥ 0. We determine also the critical and the tricritical shift exponents close to the corresponding ground state instabilities. Remarkably, we find a tricritical shift exponent identical to that found in the conventional quantum criticality and, by approaching the quantum tricritical point increasing the non-thermal control parameter r, a crossover of the quantum critical shift exponents from the conventional value φ = 1/(d − 1) to the new one φ = 1/2(d − 1). Besides, the projection in the (r,T)-plane of the phase boundary ending in the quantum tricritical point and crossovers in the quantum tricritical region appear quite similar to those found close to an usual quantum critical point. Another feature of experimental interest is that the amplitude of the Wilsonian classical critical region around this peculiar critical line is sensibly smaller than that expected in the quantum critical scenario. This suggests that the quantum tricriticality is essentially governed by mean-field critical exponents, renormalized by the shift exponent φ = 1/2(d − 1) in the quantum tricritical region. Renormalization Group Critical Line Quantum Critical Point Tricritical Point Continuous Phase Transition Rabuffo, I. aut Naddeo, A. aut Caramico D’Auria, A. aut De Cesare, L. aut Enthalten in The European physical journal / B Springer-Verlag, 1998 84(2011), 3 vom: 23. Nov., Seite 371-379 (DE-627)235469769 (DE-600)1397768-4 (DE-576)061879142 1434-6028 nnns volume:84 year:2011 number:3 day:23 month:11 pages:371-379 https://doi.org/10.1140/epjb/e2011-20621-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_105 GBV_ILN_130 GBV_ILN_170 GBV_ILN_267 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2185 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4700 UA 3858.B AR 84 2011 3 23 11 371-379 |
spelling |
10.1140/epjb/e2011-20621-0 doi (DE-627)OLC2065674210 (DE-He213)e2011-20621-0-p DE-627 ger DE-627 rakwb eng 530 VZ 530 VZ UA 3858.B VZ rvk Mercaldo, M. T. verfasserin aut Quantum tricriticality in transverse Ising-like systems 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011 Abstract The quantum tricriticality of d-dimensional transverse Ising-like systems is studied by means of a perturbative renormalization group approach focusing on static susceptibility. This allows us to obtain the phase diagram for 3 ≤ d < 4, with a clear location of the critical lines ending in the conventional quantum critical points and in the quantum tricritical one, and of the tricritical line for temperature T ≥ 0. We determine also the critical and the tricritical shift exponents close to the corresponding ground state instabilities. Remarkably, we find a tricritical shift exponent identical to that found in the conventional quantum criticality and, by approaching the quantum tricritical point increasing the non-thermal control parameter r, a crossover of the quantum critical shift exponents from the conventional value φ = 1/(d − 1) to the new one φ = 1/2(d − 1). Besides, the projection in the (r,T)-plane of the phase boundary ending in the quantum tricritical point and crossovers in the quantum tricritical region appear quite similar to those found close to an usual quantum critical point. Another feature of experimental interest is that the amplitude of the Wilsonian classical critical region around this peculiar critical line is sensibly smaller than that expected in the quantum critical scenario. This suggests that the quantum tricriticality is essentially governed by mean-field critical exponents, renormalized by the shift exponent φ = 1/2(d − 1) in the quantum tricritical region. Renormalization Group Critical Line Quantum Critical Point Tricritical Point Continuous Phase Transition Rabuffo, I. aut Naddeo, A. aut Caramico D’Auria, A. aut De Cesare, L. aut Enthalten in The European physical journal / B Springer-Verlag, 1998 84(2011), 3 vom: 23. Nov., Seite 371-379 (DE-627)235469769 (DE-600)1397768-4 (DE-576)061879142 1434-6028 nnns volume:84 year:2011 number:3 day:23 month:11 pages:371-379 https://doi.org/10.1140/epjb/e2011-20621-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_105 GBV_ILN_130 GBV_ILN_170 GBV_ILN_267 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2185 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4700 UA 3858.B AR 84 2011 3 23 11 371-379 |
allfields_unstemmed |
10.1140/epjb/e2011-20621-0 doi (DE-627)OLC2065674210 (DE-He213)e2011-20621-0-p DE-627 ger DE-627 rakwb eng 530 VZ 530 VZ UA 3858.B VZ rvk Mercaldo, M. T. verfasserin aut Quantum tricriticality in transverse Ising-like systems 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011 Abstract The quantum tricriticality of d-dimensional transverse Ising-like systems is studied by means of a perturbative renormalization group approach focusing on static susceptibility. This allows us to obtain the phase diagram for 3 ≤ d < 4, with a clear location of the critical lines ending in the conventional quantum critical points and in the quantum tricritical one, and of the tricritical line for temperature T ≥ 0. We determine also the critical and the tricritical shift exponents close to the corresponding ground state instabilities. Remarkably, we find a tricritical shift exponent identical to that found in the conventional quantum criticality and, by approaching the quantum tricritical point increasing the non-thermal control parameter r, a crossover of the quantum critical shift exponents from the conventional value φ = 1/(d − 1) to the new one φ = 1/2(d − 1). Besides, the projection in the (r,T)-plane of the phase boundary ending in the quantum tricritical point and crossovers in the quantum tricritical region appear quite similar to those found close to an usual quantum critical point. Another feature of experimental interest is that the amplitude of the Wilsonian classical critical region around this peculiar critical line is sensibly smaller than that expected in the quantum critical scenario. This suggests that the quantum tricriticality is essentially governed by mean-field critical exponents, renormalized by the shift exponent φ = 1/2(d − 1) in the quantum tricritical region. Renormalization Group Critical Line Quantum Critical Point Tricritical Point Continuous Phase Transition Rabuffo, I. aut Naddeo, A. aut Caramico D’Auria, A. aut De Cesare, L. aut Enthalten in The European physical journal / B Springer-Verlag, 1998 84(2011), 3 vom: 23. Nov., Seite 371-379 (DE-627)235469769 (DE-600)1397768-4 (DE-576)061879142 1434-6028 nnns volume:84 year:2011 number:3 day:23 month:11 pages:371-379 https://doi.org/10.1140/epjb/e2011-20621-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_105 GBV_ILN_130 GBV_ILN_170 GBV_ILN_267 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2185 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4700 UA 3858.B AR 84 2011 3 23 11 371-379 |
allfieldsGer |
10.1140/epjb/e2011-20621-0 doi (DE-627)OLC2065674210 (DE-He213)e2011-20621-0-p DE-627 ger DE-627 rakwb eng 530 VZ 530 VZ UA 3858.B VZ rvk Mercaldo, M. T. verfasserin aut Quantum tricriticality in transverse Ising-like systems 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011 Abstract The quantum tricriticality of d-dimensional transverse Ising-like systems is studied by means of a perturbative renormalization group approach focusing on static susceptibility. This allows us to obtain the phase diagram for 3 ≤ d < 4, with a clear location of the critical lines ending in the conventional quantum critical points and in the quantum tricritical one, and of the tricritical line for temperature T ≥ 0. We determine also the critical and the tricritical shift exponents close to the corresponding ground state instabilities. Remarkably, we find a tricritical shift exponent identical to that found in the conventional quantum criticality and, by approaching the quantum tricritical point increasing the non-thermal control parameter r, a crossover of the quantum critical shift exponents from the conventional value φ = 1/(d − 1) to the new one φ = 1/2(d − 1). Besides, the projection in the (r,T)-plane of the phase boundary ending in the quantum tricritical point and crossovers in the quantum tricritical region appear quite similar to those found close to an usual quantum critical point. Another feature of experimental interest is that the amplitude of the Wilsonian classical critical region around this peculiar critical line is sensibly smaller than that expected in the quantum critical scenario. This suggests that the quantum tricriticality is essentially governed by mean-field critical exponents, renormalized by the shift exponent φ = 1/2(d − 1) in the quantum tricritical region. Renormalization Group Critical Line Quantum Critical Point Tricritical Point Continuous Phase Transition Rabuffo, I. aut Naddeo, A. aut Caramico D’Auria, A. aut De Cesare, L. aut Enthalten in The European physical journal / B Springer-Verlag, 1998 84(2011), 3 vom: 23. Nov., Seite 371-379 (DE-627)235469769 (DE-600)1397768-4 (DE-576)061879142 1434-6028 nnns volume:84 year:2011 number:3 day:23 month:11 pages:371-379 https://doi.org/10.1140/epjb/e2011-20621-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_105 GBV_ILN_130 GBV_ILN_170 GBV_ILN_267 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2185 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4700 UA 3858.B AR 84 2011 3 23 11 371-379 |
allfieldsSound |
10.1140/epjb/e2011-20621-0 doi (DE-627)OLC2065674210 (DE-He213)e2011-20621-0-p DE-627 ger DE-627 rakwb eng 530 VZ 530 VZ UA 3858.B VZ rvk Mercaldo, M. T. verfasserin aut Quantum tricriticality in transverse Ising-like systems 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011 Abstract The quantum tricriticality of d-dimensional transverse Ising-like systems is studied by means of a perturbative renormalization group approach focusing on static susceptibility. This allows us to obtain the phase diagram for 3 ≤ d < 4, with a clear location of the critical lines ending in the conventional quantum critical points and in the quantum tricritical one, and of the tricritical line for temperature T ≥ 0. We determine also the critical and the tricritical shift exponents close to the corresponding ground state instabilities. Remarkably, we find a tricritical shift exponent identical to that found in the conventional quantum criticality and, by approaching the quantum tricritical point increasing the non-thermal control parameter r, a crossover of the quantum critical shift exponents from the conventional value φ = 1/(d − 1) to the new one φ = 1/2(d − 1). Besides, the projection in the (r,T)-plane of the phase boundary ending in the quantum tricritical point and crossovers in the quantum tricritical region appear quite similar to those found close to an usual quantum critical point. Another feature of experimental interest is that the amplitude of the Wilsonian classical critical region around this peculiar critical line is sensibly smaller than that expected in the quantum critical scenario. This suggests that the quantum tricriticality is essentially governed by mean-field critical exponents, renormalized by the shift exponent φ = 1/2(d − 1) in the quantum tricritical region. Renormalization Group Critical Line Quantum Critical Point Tricritical Point Continuous Phase Transition Rabuffo, I. aut Naddeo, A. aut Caramico D’Auria, A. aut De Cesare, L. aut Enthalten in The European physical journal / B Springer-Verlag, 1998 84(2011), 3 vom: 23. Nov., Seite 371-379 (DE-627)235469769 (DE-600)1397768-4 (DE-576)061879142 1434-6028 nnns volume:84 year:2011 number:3 day:23 month:11 pages:371-379 https://doi.org/10.1140/epjb/e2011-20621-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_105 GBV_ILN_130 GBV_ILN_170 GBV_ILN_267 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2185 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4700 UA 3858.B AR 84 2011 3 23 11 371-379 |
language |
English |
source |
Enthalten in The European physical journal / B 84(2011), 3 vom: 23. Nov., Seite 371-379 volume:84 year:2011 number:3 day:23 month:11 pages:371-379 |
sourceStr |
Enthalten in The European physical journal / B 84(2011), 3 vom: 23. Nov., Seite 371-379 volume:84 year:2011 number:3 day:23 month:11 pages:371-379 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Renormalization Group Critical Line Quantum Critical Point Tricritical Point Continuous Phase Transition |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
The European physical journal / B |
authorswithroles_txt_mv |
Mercaldo, M. T. @@aut@@ Rabuffo, I. @@aut@@ Naddeo, A. @@aut@@ Caramico D’Auria, A. @@aut@@ De Cesare, L. @@aut@@ |
publishDateDaySort_date |
2011-11-23T00:00:00Z |
hierarchy_top_id |
235469769 |
dewey-sort |
3530 |
id |
OLC2065674210 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2065674210</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502163431.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1140/epjb/e2011-20621-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2065674210</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)e2011-20621-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 3858.B</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mercaldo, M. T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum tricriticality in transverse Ising-like systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The quantum tricriticality of d-dimensional transverse Ising-like systems is studied by means of a perturbative renormalization group approach focusing on static susceptibility. This allows us to obtain the phase diagram for 3 ≤ d < 4, with a clear location of the critical lines ending in the conventional quantum critical points and in the quantum tricritical one, and of the tricritical line for temperature T ≥ 0. We determine also the critical and the tricritical shift exponents close to the corresponding ground state instabilities. Remarkably, we find a tricritical shift exponent identical to that found in the conventional quantum criticality and, by approaching the quantum tricritical point increasing the non-thermal control parameter r, a crossover of the quantum critical shift exponents from the conventional value φ = 1/(d − 1) to the new one φ = 1/2(d − 1). Besides, the projection in the (r,T)-plane of the phase boundary ending in the quantum tricritical point and crossovers in the quantum tricritical region appear quite similar to those found close to an usual quantum critical point. Another feature of experimental interest is that the amplitude of the Wilsonian classical critical region around this peculiar critical line is sensibly smaller than that expected in the quantum critical scenario. This suggests that the quantum tricriticality is essentially governed by mean-field critical exponents, renormalized by the shift exponent φ = 1/2(d − 1) in the quantum tricritical region.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renormalization Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical Line</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Critical Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tricritical Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous Phase Transition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rabuffo, I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naddeo, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Caramico D’Auria, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Cesare, L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The European physical journal / B</subfield><subfield code="d">Springer-Verlag, 1998</subfield><subfield code="g">84(2011), 3 vom: 23. Nov., Seite 371-379</subfield><subfield code="w">(DE-627)235469769</subfield><subfield code="w">(DE-600)1397768-4</subfield><subfield code="w">(DE-576)061879142</subfield><subfield code="x">1434-6028</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:84</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:3</subfield><subfield code="g">day:23</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:371-379</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1140/epjb/e2011-20621-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 3858.B</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">84</subfield><subfield code="j">2011</subfield><subfield code="e">3</subfield><subfield code="b">23</subfield><subfield code="c">11</subfield><subfield code="h">371-379</subfield></datafield></record></collection>
|
author |
Mercaldo, M. T. |
spellingShingle |
Mercaldo, M. T. ddc 530 rvk UA 3858.B misc Renormalization Group misc Critical Line misc Quantum Critical Point misc Tricritical Point misc Continuous Phase Transition Quantum tricriticality in transverse Ising-like systems |
authorStr |
Mercaldo, M. T. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)235469769 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1434-6028 |
topic_title |
530 VZ UA 3858.B VZ rvk Quantum tricriticality in transverse Ising-like systems Renormalization Group Critical Line Quantum Critical Point Tricritical Point Continuous Phase Transition |
topic |
ddc 530 rvk UA 3858.B misc Renormalization Group misc Critical Line misc Quantum Critical Point misc Tricritical Point misc Continuous Phase Transition |
topic_unstemmed |
ddc 530 rvk UA 3858.B misc Renormalization Group misc Critical Line misc Quantum Critical Point misc Tricritical Point misc Continuous Phase Transition |
topic_browse |
ddc 530 rvk UA 3858.B misc Renormalization Group misc Critical Line misc Quantum Critical Point misc Tricritical Point misc Continuous Phase Transition |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The European physical journal / B |
hierarchy_parent_id |
235469769 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
The European physical journal / B |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)235469769 (DE-600)1397768-4 (DE-576)061879142 |
title |
Quantum tricriticality in transverse Ising-like systems |
ctrlnum |
(DE-627)OLC2065674210 (DE-He213)e2011-20621-0-p |
title_full |
Quantum tricriticality in transverse Ising-like systems |
author_sort |
Mercaldo, M. T. |
journal |
The European physical journal / B |
journalStr |
The European physical journal / B |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
371 |
author_browse |
Mercaldo, M. T. Rabuffo, I. Naddeo, A. Caramico D’Auria, A. De Cesare, L. |
container_volume |
84 |
class |
530 VZ UA 3858.B VZ rvk |
format_se |
Aufsätze |
author-letter |
Mercaldo, M. T. |
doi_str_mv |
10.1140/epjb/e2011-20621-0 |
dewey-full |
530 |
title_sort |
quantum tricriticality in transverse ising-like systems |
title_auth |
Quantum tricriticality in transverse Ising-like systems |
abstract |
Abstract The quantum tricriticality of d-dimensional transverse Ising-like systems is studied by means of a perturbative renormalization group approach focusing on static susceptibility. This allows us to obtain the phase diagram for 3 ≤ d < 4, with a clear location of the critical lines ending in the conventional quantum critical points and in the quantum tricritical one, and of the tricritical line for temperature T ≥ 0. We determine also the critical and the tricritical shift exponents close to the corresponding ground state instabilities. Remarkably, we find a tricritical shift exponent identical to that found in the conventional quantum criticality and, by approaching the quantum tricritical point increasing the non-thermal control parameter r, a crossover of the quantum critical shift exponents from the conventional value φ = 1/(d − 1) to the new one φ = 1/2(d − 1). Besides, the projection in the (r,T)-plane of the phase boundary ending in the quantum tricritical point and crossovers in the quantum tricritical region appear quite similar to those found close to an usual quantum critical point. Another feature of experimental interest is that the amplitude of the Wilsonian classical critical region around this peculiar critical line is sensibly smaller than that expected in the quantum critical scenario. This suggests that the quantum tricriticality is essentially governed by mean-field critical exponents, renormalized by the shift exponent φ = 1/2(d − 1) in the quantum tricritical region. © EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011 |
abstractGer |
Abstract The quantum tricriticality of d-dimensional transverse Ising-like systems is studied by means of a perturbative renormalization group approach focusing on static susceptibility. This allows us to obtain the phase diagram for 3 ≤ d < 4, with a clear location of the critical lines ending in the conventional quantum critical points and in the quantum tricritical one, and of the tricritical line for temperature T ≥ 0. We determine also the critical and the tricritical shift exponents close to the corresponding ground state instabilities. Remarkably, we find a tricritical shift exponent identical to that found in the conventional quantum criticality and, by approaching the quantum tricritical point increasing the non-thermal control parameter r, a crossover of the quantum critical shift exponents from the conventional value φ = 1/(d − 1) to the new one φ = 1/2(d − 1). Besides, the projection in the (r,T)-plane of the phase boundary ending in the quantum tricritical point and crossovers in the quantum tricritical region appear quite similar to those found close to an usual quantum critical point. Another feature of experimental interest is that the amplitude of the Wilsonian classical critical region around this peculiar critical line is sensibly smaller than that expected in the quantum critical scenario. This suggests that the quantum tricriticality is essentially governed by mean-field critical exponents, renormalized by the shift exponent φ = 1/2(d − 1) in the quantum tricritical region. © EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011 |
abstract_unstemmed |
Abstract The quantum tricriticality of d-dimensional transverse Ising-like systems is studied by means of a perturbative renormalization group approach focusing on static susceptibility. This allows us to obtain the phase diagram for 3 ≤ d < 4, with a clear location of the critical lines ending in the conventional quantum critical points and in the quantum tricritical one, and of the tricritical line for temperature T ≥ 0. We determine also the critical and the tricritical shift exponents close to the corresponding ground state instabilities. Remarkably, we find a tricritical shift exponent identical to that found in the conventional quantum criticality and, by approaching the quantum tricritical point increasing the non-thermal control parameter r, a crossover of the quantum critical shift exponents from the conventional value φ = 1/(d − 1) to the new one φ = 1/2(d − 1). Besides, the projection in the (r,T)-plane of the phase boundary ending in the quantum tricritical point and crossovers in the quantum tricritical region appear quite similar to those found close to an usual quantum critical point. Another feature of experimental interest is that the amplitude of the Wilsonian classical critical region around this peculiar critical line is sensibly smaller than that expected in the quantum critical scenario. This suggests that the quantum tricriticality is essentially governed by mean-field critical exponents, renormalized by the shift exponent φ = 1/2(d − 1) in the quantum tricritical region. © EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_105 GBV_ILN_130 GBV_ILN_170 GBV_ILN_267 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2185 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Quantum tricriticality in transverse Ising-like systems |
url |
https://doi.org/10.1140/epjb/e2011-20621-0 |
remote_bool |
false |
author2 |
Rabuffo, I. Naddeo, A. Caramico D’Auria, A. De Cesare, L. |
author2Str |
Rabuffo, I. Naddeo, A. Caramico D’Auria, A. De Cesare, L. |
ppnlink |
235469769 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1140/epjb/e2011-20621-0 |
up_date |
2024-07-04T02:47:16.627Z |
_version_ |
1803614931265781760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2065674210</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502163431.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1140/epjb/e2011-20621-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2065674210</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)e2011-20621-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 3858.B</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mercaldo, M. T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum tricriticality in transverse Ising-like systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The quantum tricriticality of d-dimensional transverse Ising-like systems is studied by means of a perturbative renormalization group approach focusing on static susceptibility. This allows us to obtain the phase diagram for 3 ≤ d < 4, with a clear location of the critical lines ending in the conventional quantum critical points and in the quantum tricritical one, and of the tricritical line for temperature T ≥ 0. We determine also the critical and the tricritical shift exponents close to the corresponding ground state instabilities. Remarkably, we find a tricritical shift exponent identical to that found in the conventional quantum criticality and, by approaching the quantum tricritical point increasing the non-thermal control parameter r, a crossover of the quantum critical shift exponents from the conventional value φ = 1/(d − 1) to the new one φ = 1/2(d − 1). Besides, the projection in the (r,T)-plane of the phase boundary ending in the quantum tricritical point and crossovers in the quantum tricritical region appear quite similar to those found close to an usual quantum critical point. Another feature of experimental interest is that the amplitude of the Wilsonian classical critical region around this peculiar critical line is sensibly smaller than that expected in the quantum critical scenario. This suggests that the quantum tricriticality is essentially governed by mean-field critical exponents, renormalized by the shift exponent φ = 1/2(d − 1) in the quantum tricritical region.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renormalization Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical Line</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Critical Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tricritical Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous Phase Transition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rabuffo, I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naddeo, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Caramico D’Auria, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Cesare, L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The European physical journal / B</subfield><subfield code="d">Springer-Verlag, 1998</subfield><subfield code="g">84(2011), 3 vom: 23. Nov., Seite 371-379</subfield><subfield code="w">(DE-627)235469769</subfield><subfield code="w">(DE-600)1397768-4</subfield><subfield code="w">(DE-576)061879142</subfield><subfield code="x">1434-6028</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:84</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:3</subfield><subfield code="g">day:23</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:371-379</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1140/epjb/e2011-20621-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 3858.B</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">84</subfield><subfield code="j">2011</subfield><subfield code="e">3</subfield><subfield code="b">23</subfield><subfield code="c">11</subfield><subfield code="h">371-379</subfield></datafield></record></collection>
|
score |
7.4007626 |