Optimization in liner shipping
Abstract Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for...
Ausführliche Beschreibung
Autor*in: |
Brouer, Berit Dangaard [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: 4OR - Springer Berlin Heidelberg, 2003, 15(2017), 1 vom: März, Seite 1-35 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2017 ; number:1 ; month:03 ; pages:1-35 |
Links: |
---|
DOI / URN: |
10.1007/s10288-017-0342-6 |
---|
Katalog-ID: |
OLC2065837284 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2065837284 | ||
003 | DE-627 | ||
005 | 20230502182006.0 | ||
007 | tu | ||
008 | 200820s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10288-017-0342-6 |2 doi | |
035 | |a (DE-627)OLC2065837284 | ||
035 | |a (DE-He213)s10288-017-0342-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 330 |a 510 |q VZ |
082 | 0 | 4 | |a 650 |q VZ |
084 | |a 3,2 |2 ssgn | ||
100 | 1 | |a Brouer, Berit Dangaard |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimization in liner shipping |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2017 | ||
520 | |a Abstract Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem description, bring an overview of the existing literature, and go in depth with a specific model that somehow is essential for the problem. We conclude the survey by giving an introduction to the public benchmark instances LINER-LIB. Finally, we discuss future challenges and give directions for further research. | ||
650 | 4 | |a Logistics | |
650 | 4 | |a Liner shipping | |
650 | 4 | |a Large scale optimization | |
650 | 4 | |a Mathematical modelling | |
700 | 1 | |a Karsten, Christian Vad |4 aut | |
700 | 1 | |a Pisinger, David |0 (orcid)0000-0001-7695-9662 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t 4OR |d Springer Berlin Heidelberg, 2003 |g 15(2017), 1 vom: März, Seite 1-35 |w (DE-627)374596255 |w (DE-600)2127815-5 |w (DE-576)114670935 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2017 |g number:1 |g month:03 |g pages:1-35 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10288-017-0342-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 15 |j 2017 |e 1 |c 03 |h 1-35 |
author_variant |
b d b bd bdb c v k cv cvk d p dp |
---|---|
matchkey_str |
brouerberitdangaardkarstenchristianvadpi:2017----:piiainnie |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s10288-017-0342-6 doi (DE-627)OLC2065837284 (DE-He213)s10288-017-0342-6-p DE-627 ger DE-627 rakwb eng 330 510 VZ 650 VZ 3,2 ssgn Brouer, Berit Dangaard verfasserin aut Optimization in liner shipping 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2017 Abstract Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem description, bring an overview of the existing literature, and go in depth with a specific model that somehow is essential for the problem. We conclude the survey by giving an introduction to the public benchmark instances LINER-LIB. Finally, we discuss future challenges and give directions for further research. Logistics Liner shipping Large scale optimization Mathematical modelling Karsten, Christian Vad aut Pisinger, David (orcid)0000-0001-7695-9662 aut Enthalten in 4OR Springer Berlin Heidelberg, 2003 15(2017), 1 vom: März, Seite 1-35 (DE-627)374596255 (DE-600)2127815-5 (DE-576)114670935 nnns volume:15 year:2017 number:1 month:03 pages:1-35 https://doi.org/10.1007/s10288-017-0342-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 15 2017 1 03 1-35 |
spelling |
10.1007/s10288-017-0342-6 doi (DE-627)OLC2065837284 (DE-He213)s10288-017-0342-6-p DE-627 ger DE-627 rakwb eng 330 510 VZ 650 VZ 3,2 ssgn Brouer, Berit Dangaard verfasserin aut Optimization in liner shipping 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2017 Abstract Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem description, bring an overview of the existing literature, and go in depth with a specific model that somehow is essential for the problem. We conclude the survey by giving an introduction to the public benchmark instances LINER-LIB. Finally, we discuss future challenges and give directions for further research. Logistics Liner shipping Large scale optimization Mathematical modelling Karsten, Christian Vad aut Pisinger, David (orcid)0000-0001-7695-9662 aut Enthalten in 4OR Springer Berlin Heidelberg, 2003 15(2017), 1 vom: März, Seite 1-35 (DE-627)374596255 (DE-600)2127815-5 (DE-576)114670935 nnns volume:15 year:2017 number:1 month:03 pages:1-35 https://doi.org/10.1007/s10288-017-0342-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 15 2017 1 03 1-35 |
allfields_unstemmed |
10.1007/s10288-017-0342-6 doi (DE-627)OLC2065837284 (DE-He213)s10288-017-0342-6-p DE-627 ger DE-627 rakwb eng 330 510 VZ 650 VZ 3,2 ssgn Brouer, Berit Dangaard verfasserin aut Optimization in liner shipping 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2017 Abstract Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem description, bring an overview of the existing literature, and go in depth with a specific model that somehow is essential for the problem. We conclude the survey by giving an introduction to the public benchmark instances LINER-LIB. Finally, we discuss future challenges and give directions for further research. Logistics Liner shipping Large scale optimization Mathematical modelling Karsten, Christian Vad aut Pisinger, David (orcid)0000-0001-7695-9662 aut Enthalten in 4OR Springer Berlin Heidelberg, 2003 15(2017), 1 vom: März, Seite 1-35 (DE-627)374596255 (DE-600)2127815-5 (DE-576)114670935 nnns volume:15 year:2017 number:1 month:03 pages:1-35 https://doi.org/10.1007/s10288-017-0342-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 15 2017 1 03 1-35 |
allfieldsGer |
10.1007/s10288-017-0342-6 doi (DE-627)OLC2065837284 (DE-He213)s10288-017-0342-6-p DE-627 ger DE-627 rakwb eng 330 510 VZ 650 VZ 3,2 ssgn Brouer, Berit Dangaard verfasserin aut Optimization in liner shipping 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2017 Abstract Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem description, bring an overview of the existing literature, and go in depth with a specific model that somehow is essential for the problem. We conclude the survey by giving an introduction to the public benchmark instances LINER-LIB. Finally, we discuss future challenges and give directions for further research. Logistics Liner shipping Large scale optimization Mathematical modelling Karsten, Christian Vad aut Pisinger, David (orcid)0000-0001-7695-9662 aut Enthalten in 4OR Springer Berlin Heidelberg, 2003 15(2017), 1 vom: März, Seite 1-35 (DE-627)374596255 (DE-600)2127815-5 (DE-576)114670935 nnns volume:15 year:2017 number:1 month:03 pages:1-35 https://doi.org/10.1007/s10288-017-0342-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 15 2017 1 03 1-35 |
allfieldsSound |
10.1007/s10288-017-0342-6 doi (DE-627)OLC2065837284 (DE-He213)s10288-017-0342-6-p DE-627 ger DE-627 rakwb eng 330 510 VZ 650 VZ 3,2 ssgn Brouer, Berit Dangaard verfasserin aut Optimization in liner shipping 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2017 Abstract Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem description, bring an overview of the existing literature, and go in depth with a specific model that somehow is essential for the problem. We conclude the survey by giving an introduction to the public benchmark instances LINER-LIB. Finally, we discuss future challenges and give directions for further research. Logistics Liner shipping Large scale optimization Mathematical modelling Karsten, Christian Vad aut Pisinger, David (orcid)0000-0001-7695-9662 aut Enthalten in 4OR Springer Berlin Heidelberg, 2003 15(2017), 1 vom: März, Seite 1-35 (DE-627)374596255 (DE-600)2127815-5 (DE-576)114670935 nnns volume:15 year:2017 number:1 month:03 pages:1-35 https://doi.org/10.1007/s10288-017-0342-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 AR 15 2017 1 03 1-35 |
language |
English |
source |
Enthalten in 4OR 15(2017), 1 vom: März, Seite 1-35 volume:15 year:2017 number:1 month:03 pages:1-35 |
sourceStr |
Enthalten in 4OR 15(2017), 1 vom: März, Seite 1-35 volume:15 year:2017 number:1 month:03 pages:1-35 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Logistics Liner shipping Large scale optimization Mathematical modelling |
dewey-raw |
330 |
isfreeaccess_bool |
false |
container_title |
4OR |
authorswithroles_txt_mv |
Brouer, Berit Dangaard @@aut@@ Karsten, Christian Vad @@aut@@ Pisinger, David @@aut@@ |
publishDateDaySort_date |
2017-03-01T00:00:00Z |
hierarchy_top_id |
374596255 |
dewey-sort |
3330 |
id |
OLC2065837284 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2065837284</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502182006.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10288-017-0342-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2065837284</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10288-017-0342-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">650</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brouer, Berit Dangaard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization in liner shipping</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem description, bring an overview of the existing literature, and go in depth with a specific model that somehow is essential for the problem. We conclude the survey by giving an introduction to the public benchmark instances LINER-LIB. Finally, we discuss future challenges and give directions for further research.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liner shipping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large scale optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical modelling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Karsten, Christian Vad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pisinger, David</subfield><subfield code="0">(orcid)0000-0001-7695-9662</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">4OR</subfield><subfield code="d">Springer Berlin Heidelberg, 2003</subfield><subfield code="g">15(2017), 1 vom: März, Seite 1-35</subfield><subfield code="w">(DE-627)374596255</subfield><subfield code="w">(DE-600)2127815-5</subfield><subfield code="w">(DE-576)114670935</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1-35</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10288-017-0342-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">1-35</subfield></datafield></record></collection>
|
author |
Brouer, Berit Dangaard |
spellingShingle |
Brouer, Berit Dangaard ddc 330 ddc 650 ssgn 3,2 misc Logistics misc Liner shipping misc Large scale optimization misc Mathematical modelling Optimization in liner shipping |
authorStr |
Brouer, Berit Dangaard |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)374596255 |
format |
Article |
dewey-ones |
330 - Economics 510 - Mathematics 650 - Management & auxiliary services |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
topic_title |
330 510 VZ 650 VZ 3,2 ssgn Optimization in liner shipping Logistics Liner shipping Large scale optimization Mathematical modelling |
topic |
ddc 330 ddc 650 ssgn 3,2 misc Logistics misc Liner shipping misc Large scale optimization misc Mathematical modelling |
topic_unstemmed |
ddc 330 ddc 650 ssgn 3,2 misc Logistics misc Liner shipping misc Large scale optimization misc Mathematical modelling |
topic_browse |
ddc 330 ddc 650 ssgn 3,2 misc Logistics misc Liner shipping misc Large scale optimization misc Mathematical modelling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
4OR |
hierarchy_parent_id |
374596255 |
dewey-tens |
330 - Economics 510 - Mathematics 650 - Management & public relations |
hierarchy_top_title |
4OR |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)374596255 (DE-600)2127815-5 (DE-576)114670935 |
title |
Optimization in liner shipping |
ctrlnum |
(DE-627)OLC2065837284 (DE-He213)s10288-017-0342-6-p |
title_full |
Optimization in liner shipping |
author_sort |
Brouer, Berit Dangaard |
journal |
4OR |
journalStr |
4OR |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Brouer, Berit Dangaard Karsten, Christian Vad Pisinger, David |
container_volume |
15 |
class |
330 510 VZ 650 VZ 3,2 ssgn |
format_se |
Aufsätze |
author-letter |
Brouer, Berit Dangaard |
doi_str_mv |
10.1007/s10288-017-0342-6 |
normlink |
(ORCID)0000-0001-7695-9662 |
normlink_prefix_str_mv |
(orcid)0000-0001-7695-9662 |
dewey-full |
330 510 650 |
title_sort |
optimization in liner shipping |
title_auth |
Optimization in liner shipping |
abstract |
Abstract Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem description, bring an overview of the existing literature, and go in depth with a specific model that somehow is essential for the problem. We conclude the survey by giving an introduction to the public benchmark instances LINER-LIB. Finally, we discuss future challenges and give directions for further research. © Springer-Verlag Berlin Heidelberg 2017 |
abstractGer |
Abstract Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem description, bring an overview of the existing literature, and go in depth with a specific model that somehow is essential for the problem. We conclude the survey by giving an introduction to the public benchmark instances LINER-LIB. Finally, we discuss future challenges and give directions for further research. © Springer-Verlag Berlin Heidelberg 2017 |
abstract_unstemmed |
Abstract Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem description, bring an overview of the existing literature, and go in depth with a specific model that somehow is essential for the problem. We conclude the survey by giving an introduction to the public benchmark instances LINER-LIB. Finally, we discuss future challenges and give directions for further research. © Springer-Verlag Berlin Heidelberg 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
1 |
title_short |
Optimization in liner shipping |
url |
https://doi.org/10.1007/s10288-017-0342-6 |
remote_bool |
false |
author2 |
Karsten, Christian Vad Pisinger, David |
author2Str |
Karsten, Christian Vad Pisinger, David |
ppnlink |
374596255 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10288-017-0342-6 |
up_date |
2024-07-04T03:11:52.381Z |
_version_ |
1803616478714396672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2065837284</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502182006.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10288-017-0342-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2065837284</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10288-017-0342-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">650</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brouer, Berit Dangaard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization in liner shipping</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem description, bring an overview of the existing literature, and go in depth with a specific model that somehow is essential for the problem. We conclude the survey by giving an introduction to the public benchmark instances LINER-LIB. Finally, we discuss future challenges and give directions for further research.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liner shipping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large scale optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical modelling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Karsten, Christian Vad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pisinger, David</subfield><subfield code="0">(orcid)0000-0001-7695-9662</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">4OR</subfield><subfield code="d">Springer Berlin Heidelberg, 2003</subfield><subfield code="g">15(2017), 1 vom: März, Seite 1-35</subfield><subfield code="w">(DE-627)374596255</subfield><subfield code="w">(DE-600)2127815-5</subfield><subfield code="w">(DE-576)114670935</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1-35</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10288-017-0342-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">1-35</subfield></datafield></record></collection>
|
score |
7.399727 |