STNR: A suffix tree based noise resilient algorithm for periodicity detection in time series databases

Abstract Periodicity detection has been used extensively in predicting the behavior and trends of time series databases. In this paper, we present a noise resilient algorithm for periodicity detection using suffix trees as an underlying data structure. The algorithm not only calculates symbol and se...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Rasheed, Faraz [verfasserIn]

Alhajj, Reda

Format:

Artikel

Sprache:

Englisch

Erschienen:

2008

Schlagwörter:

Time series

Periodicity detection

Suffix tree

Segment periodicity

Sequence periodicity

Noise resilient

Anmerkung:

© Springer Science+Business Media, LLC 2008

Übergeordnetes Werk:

Enthalten in: Applied intelligence - Springer US, 1991, 32(2008), 3 vom: 04. Sept., Seite 267-278

Übergeordnetes Werk:

volume:32 ; year:2008 ; number:3 ; day:04 ; month:09 ; pages:267-278

Links:

Volltext

DOI / URN:

10.1007/s10489-008-0144-9

Katalog-ID:

OLC2066095621

Nicht das Richtige dabei?

Schreiben Sie uns!