A graph based superpixel generation algorithm
Abstract In recent years, superpixels have become a prevailing tool in computer vision and many methods have been proposed. However, due to the problems such as high time complexity, low object boundary adherence and irregular shape, only a few methods are widely used. To improve these issues, we pr...
Ausführliche Beschreibung
Autor*in: |
Wu, Xiang [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied intelligence - Springer US, 1991, 48(2018), 11 vom: 29. Juni, Seite 4485-4496 |
---|---|
Übergeordnetes Werk: |
volume:48 ; year:2018 ; number:11 ; day:29 ; month:06 ; pages:4485-4496 |
Links: |
---|
DOI / URN: |
10.1007/s10489-018-1223-1 |
---|
Katalog-ID: |
OLC206610583X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC206610583X | ||
003 | DE-627 | ||
005 | 20230502205009.0 | ||
007 | tu | ||
008 | 200820s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10489-018-1223-1 |2 doi | |
035 | |a (DE-627)OLC206610583X | ||
035 | |a (DE-He213)s10489-018-1223-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Wu, Xiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a A graph based superpixel generation algorithm |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2018 | ||
520 | |a Abstract In recent years, superpixels have become a prevailing tool in computer vision and many methods have been proposed. However, due to the problems such as high time complexity, low object boundary adherence and irregular shape, only a few methods are widely used. To improve these issues, we propose a novel general superpixel segmentation method called minstpixel, which relies on energy functional minimization. Minstpixel introduces an energy functional based on minimal spanning tree and designs a strategy to gain the global optimum. It never needs sophisticated optimization scheme, complicated mathematical deduction or fussy iteration process. At the same time, the time complexity of minstpixel is approximately linear with respect to the number of image pixels. The benchmark on Berkeley segmentation database shows that minstpixel could rival state-of-the-art in every aspect. | ||
650 | 4 | |a Superpixels | |
650 | 4 | |a Energy minimization | |
650 | 4 | |a Minimization spanning tree | |
700 | 1 | |a Liu, Xianhui |4 aut | |
700 | 1 | |a Chen, Yufei |4 aut | |
700 | 1 | |a Shen, Jianan |4 aut | |
700 | 1 | |a Zhao, Weidong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied intelligence |d Springer US, 1991 |g 48(2018), 11 vom: 29. Juni, Seite 4485-4496 |w (DE-627)130990515 |w (DE-600)1080229-0 |w (DE-576)029154286 |x 0924-669X |7 nnns |
773 | 1 | 8 | |g volume:48 |g year:2018 |g number:11 |g day:29 |g month:06 |g pages:4485-4496 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10489-018-1223-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 48 |j 2018 |e 11 |b 29 |c 06 |h 4485-4496 |
author_variant |
x w xw x l xl y c yc j s js w z wz |
---|---|
matchkey_str |
article:0924669X:2018----::gahaespriegnrto |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s10489-018-1223-1 doi (DE-627)OLC206610583X (DE-He213)s10489-018-1223-1-p DE-627 ger DE-627 rakwb eng 004 VZ Wu, Xiang verfasserin aut A graph based superpixel generation algorithm 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In recent years, superpixels have become a prevailing tool in computer vision and many methods have been proposed. However, due to the problems such as high time complexity, low object boundary adherence and irregular shape, only a few methods are widely used. To improve these issues, we propose a novel general superpixel segmentation method called minstpixel, which relies on energy functional minimization. Minstpixel introduces an energy functional based on minimal spanning tree and designs a strategy to gain the global optimum. It never needs sophisticated optimization scheme, complicated mathematical deduction or fussy iteration process. At the same time, the time complexity of minstpixel is approximately linear with respect to the number of image pixels. The benchmark on Berkeley segmentation database shows that minstpixel could rival state-of-the-art in every aspect. Superpixels Energy minimization Minimization spanning tree Liu, Xianhui aut Chen, Yufei aut Shen, Jianan aut Zhao, Weidong aut Enthalten in Applied intelligence Springer US, 1991 48(2018), 11 vom: 29. Juni, Seite 4485-4496 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:48 year:2018 number:11 day:29 month:06 pages:4485-4496 https://doi.org/10.1007/s10489-018-1223-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 AR 48 2018 11 29 06 4485-4496 |
spelling |
10.1007/s10489-018-1223-1 doi (DE-627)OLC206610583X (DE-He213)s10489-018-1223-1-p DE-627 ger DE-627 rakwb eng 004 VZ Wu, Xiang verfasserin aut A graph based superpixel generation algorithm 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In recent years, superpixels have become a prevailing tool in computer vision and many methods have been proposed. However, due to the problems such as high time complexity, low object boundary adherence and irregular shape, only a few methods are widely used. To improve these issues, we propose a novel general superpixel segmentation method called minstpixel, which relies on energy functional minimization. Minstpixel introduces an energy functional based on minimal spanning tree and designs a strategy to gain the global optimum. It never needs sophisticated optimization scheme, complicated mathematical deduction or fussy iteration process. At the same time, the time complexity of minstpixel is approximately linear with respect to the number of image pixels. The benchmark on Berkeley segmentation database shows that minstpixel could rival state-of-the-art in every aspect. Superpixels Energy minimization Minimization spanning tree Liu, Xianhui aut Chen, Yufei aut Shen, Jianan aut Zhao, Weidong aut Enthalten in Applied intelligence Springer US, 1991 48(2018), 11 vom: 29. Juni, Seite 4485-4496 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:48 year:2018 number:11 day:29 month:06 pages:4485-4496 https://doi.org/10.1007/s10489-018-1223-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 AR 48 2018 11 29 06 4485-4496 |
allfields_unstemmed |
10.1007/s10489-018-1223-1 doi (DE-627)OLC206610583X (DE-He213)s10489-018-1223-1-p DE-627 ger DE-627 rakwb eng 004 VZ Wu, Xiang verfasserin aut A graph based superpixel generation algorithm 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In recent years, superpixels have become a prevailing tool in computer vision and many methods have been proposed. However, due to the problems such as high time complexity, low object boundary adherence and irregular shape, only a few methods are widely used. To improve these issues, we propose a novel general superpixel segmentation method called minstpixel, which relies on energy functional minimization. Minstpixel introduces an energy functional based on minimal spanning tree and designs a strategy to gain the global optimum. It never needs sophisticated optimization scheme, complicated mathematical deduction or fussy iteration process. At the same time, the time complexity of minstpixel is approximately linear with respect to the number of image pixels. The benchmark on Berkeley segmentation database shows that minstpixel could rival state-of-the-art in every aspect. Superpixels Energy minimization Minimization spanning tree Liu, Xianhui aut Chen, Yufei aut Shen, Jianan aut Zhao, Weidong aut Enthalten in Applied intelligence Springer US, 1991 48(2018), 11 vom: 29. Juni, Seite 4485-4496 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:48 year:2018 number:11 day:29 month:06 pages:4485-4496 https://doi.org/10.1007/s10489-018-1223-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 AR 48 2018 11 29 06 4485-4496 |
allfieldsGer |
10.1007/s10489-018-1223-1 doi (DE-627)OLC206610583X (DE-He213)s10489-018-1223-1-p DE-627 ger DE-627 rakwb eng 004 VZ Wu, Xiang verfasserin aut A graph based superpixel generation algorithm 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In recent years, superpixels have become a prevailing tool in computer vision and many methods have been proposed. However, due to the problems such as high time complexity, low object boundary adherence and irregular shape, only a few methods are widely used. To improve these issues, we propose a novel general superpixel segmentation method called minstpixel, which relies on energy functional minimization. Minstpixel introduces an energy functional based on minimal spanning tree and designs a strategy to gain the global optimum. It never needs sophisticated optimization scheme, complicated mathematical deduction or fussy iteration process. At the same time, the time complexity of minstpixel is approximately linear with respect to the number of image pixels. The benchmark on Berkeley segmentation database shows that minstpixel could rival state-of-the-art in every aspect. Superpixels Energy minimization Minimization spanning tree Liu, Xianhui aut Chen, Yufei aut Shen, Jianan aut Zhao, Weidong aut Enthalten in Applied intelligence Springer US, 1991 48(2018), 11 vom: 29. Juni, Seite 4485-4496 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:48 year:2018 number:11 day:29 month:06 pages:4485-4496 https://doi.org/10.1007/s10489-018-1223-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 AR 48 2018 11 29 06 4485-4496 |
allfieldsSound |
10.1007/s10489-018-1223-1 doi (DE-627)OLC206610583X (DE-He213)s10489-018-1223-1-p DE-627 ger DE-627 rakwb eng 004 VZ Wu, Xiang verfasserin aut A graph based superpixel generation algorithm 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In recent years, superpixels have become a prevailing tool in computer vision and many methods have been proposed. However, due to the problems such as high time complexity, low object boundary adherence and irregular shape, only a few methods are widely used. To improve these issues, we propose a novel general superpixel segmentation method called minstpixel, which relies on energy functional minimization. Minstpixel introduces an energy functional based on minimal spanning tree and designs a strategy to gain the global optimum. It never needs sophisticated optimization scheme, complicated mathematical deduction or fussy iteration process. At the same time, the time complexity of minstpixel is approximately linear with respect to the number of image pixels. The benchmark on Berkeley segmentation database shows that minstpixel could rival state-of-the-art in every aspect. Superpixels Energy minimization Minimization spanning tree Liu, Xianhui aut Chen, Yufei aut Shen, Jianan aut Zhao, Weidong aut Enthalten in Applied intelligence Springer US, 1991 48(2018), 11 vom: 29. Juni, Seite 4485-4496 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:48 year:2018 number:11 day:29 month:06 pages:4485-4496 https://doi.org/10.1007/s10489-018-1223-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 AR 48 2018 11 29 06 4485-4496 |
language |
English |
source |
Enthalten in Applied intelligence 48(2018), 11 vom: 29. Juni, Seite 4485-4496 volume:48 year:2018 number:11 day:29 month:06 pages:4485-4496 |
sourceStr |
Enthalten in Applied intelligence 48(2018), 11 vom: 29. Juni, Seite 4485-4496 volume:48 year:2018 number:11 day:29 month:06 pages:4485-4496 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Superpixels Energy minimization Minimization spanning tree |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Applied intelligence |
authorswithroles_txt_mv |
Wu, Xiang @@aut@@ Liu, Xianhui @@aut@@ Chen, Yufei @@aut@@ Shen, Jianan @@aut@@ Zhao, Weidong @@aut@@ |
publishDateDaySort_date |
2018-06-29T00:00:00Z |
hierarchy_top_id |
130990515 |
dewey-sort |
14 |
id |
OLC206610583X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206610583X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502205009.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10489-018-1223-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206610583X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10489-018-1223-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Xiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A graph based superpixel generation algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In recent years, superpixels have become a prevailing tool in computer vision and many methods have been proposed. However, due to the problems such as high time complexity, low object boundary adherence and irregular shape, only a few methods are widely used. To improve these issues, we propose a novel general superpixel segmentation method called minstpixel, which relies on energy functional minimization. Minstpixel introduces an energy functional based on minimal spanning tree and designs a strategy to gain the global optimum. It never needs sophisticated optimization scheme, complicated mathematical deduction or fussy iteration process. At the same time, the time complexity of minstpixel is approximately linear with respect to the number of image pixels. The benchmark on Berkeley segmentation database shows that minstpixel could rival state-of-the-art in every aspect.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superpixels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy minimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimization spanning tree</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xianhui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yufei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Jianan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Weidong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied intelligence</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">48(2018), 11 vom: 29. Juni, Seite 4485-4496</subfield><subfield code="w">(DE-627)130990515</subfield><subfield code="w">(DE-600)1080229-0</subfield><subfield code="w">(DE-576)029154286</subfield><subfield code="x">0924-669X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:11</subfield><subfield code="g">day:29</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:4485-4496</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10489-018-1223-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2018</subfield><subfield code="e">11</subfield><subfield code="b">29</subfield><subfield code="c">06</subfield><subfield code="h">4485-4496</subfield></datafield></record></collection>
|
author |
Wu, Xiang |
spellingShingle |
Wu, Xiang ddc 004 misc Superpixels misc Energy minimization misc Minimization spanning tree A graph based superpixel generation algorithm |
authorStr |
Wu, Xiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130990515 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-669X |
topic_title |
004 VZ A graph based superpixel generation algorithm Superpixels Energy minimization Minimization spanning tree |
topic |
ddc 004 misc Superpixels misc Energy minimization misc Minimization spanning tree |
topic_unstemmed |
ddc 004 misc Superpixels misc Energy minimization misc Minimization spanning tree |
topic_browse |
ddc 004 misc Superpixels misc Energy minimization misc Minimization spanning tree |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied intelligence |
hierarchy_parent_id |
130990515 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Applied intelligence |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 |
title |
A graph based superpixel generation algorithm |
ctrlnum |
(DE-627)OLC206610583X (DE-He213)s10489-018-1223-1-p |
title_full |
A graph based superpixel generation algorithm |
author_sort |
Wu, Xiang |
journal |
Applied intelligence |
journalStr |
Applied intelligence |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
4485 |
author_browse |
Wu, Xiang Liu, Xianhui Chen, Yufei Shen, Jianan Zhao, Weidong |
container_volume |
48 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Wu, Xiang |
doi_str_mv |
10.1007/s10489-018-1223-1 |
dewey-full |
004 |
title_sort |
a graph based superpixel generation algorithm |
title_auth |
A graph based superpixel generation algorithm |
abstract |
Abstract In recent years, superpixels have become a prevailing tool in computer vision and many methods have been proposed. However, due to the problems such as high time complexity, low object boundary adherence and irregular shape, only a few methods are widely used. To improve these issues, we propose a novel general superpixel segmentation method called minstpixel, which relies on energy functional minimization. Minstpixel introduces an energy functional based on minimal spanning tree and designs a strategy to gain the global optimum. It never needs sophisticated optimization scheme, complicated mathematical deduction or fussy iteration process. At the same time, the time complexity of minstpixel is approximately linear with respect to the number of image pixels. The benchmark on Berkeley segmentation database shows that minstpixel could rival state-of-the-art in every aspect. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstractGer |
Abstract In recent years, superpixels have become a prevailing tool in computer vision and many methods have been proposed. However, due to the problems such as high time complexity, low object boundary adherence and irregular shape, only a few methods are widely used. To improve these issues, we propose a novel general superpixel segmentation method called minstpixel, which relies on energy functional minimization. Minstpixel introduces an energy functional based on minimal spanning tree and designs a strategy to gain the global optimum. It never needs sophisticated optimization scheme, complicated mathematical deduction or fussy iteration process. At the same time, the time complexity of minstpixel is approximately linear with respect to the number of image pixels. The benchmark on Berkeley segmentation database shows that minstpixel could rival state-of-the-art in every aspect. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract In recent years, superpixels have become a prevailing tool in computer vision and many methods have been proposed. However, due to the problems such as high time complexity, low object boundary adherence and irregular shape, only a few methods are widely used. To improve these issues, we propose a novel general superpixel segmentation method called minstpixel, which relies on energy functional minimization. Minstpixel introduces an energy functional based on minimal spanning tree and designs a strategy to gain the global optimum. It never needs sophisticated optimization scheme, complicated mathematical deduction or fussy iteration process. At the same time, the time complexity of minstpixel is approximately linear with respect to the number of image pixels. The benchmark on Berkeley segmentation database shows that minstpixel could rival state-of-the-art in every aspect. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 |
container_issue |
11 |
title_short |
A graph based superpixel generation algorithm |
url |
https://doi.org/10.1007/s10489-018-1223-1 |
remote_bool |
false |
author2 |
Liu, Xianhui Chen, Yufei Shen, Jianan Zhao, Weidong |
author2Str |
Liu, Xianhui Chen, Yufei Shen, Jianan Zhao, Weidong |
ppnlink |
130990515 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10489-018-1223-1 |
up_date |
2024-07-04T03:46:43.498Z |
_version_ |
1803618671410544640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206610583X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502205009.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10489-018-1223-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206610583X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10489-018-1223-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Xiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A graph based superpixel generation algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In recent years, superpixels have become a prevailing tool in computer vision and many methods have been proposed. However, due to the problems such as high time complexity, low object boundary adherence and irregular shape, only a few methods are widely used. To improve these issues, we propose a novel general superpixel segmentation method called minstpixel, which relies on energy functional minimization. Minstpixel introduces an energy functional based on minimal spanning tree and designs a strategy to gain the global optimum. It never needs sophisticated optimization scheme, complicated mathematical deduction or fussy iteration process. At the same time, the time complexity of minstpixel is approximately linear with respect to the number of image pixels. The benchmark on Berkeley segmentation database shows that minstpixel could rival state-of-the-art in every aspect.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superpixels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy minimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimization spanning tree</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xianhui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yufei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Jianan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Weidong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied intelligence</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">48(2018), 11 vom: 29. Juni, Seite 4485-4496</subfield><subfield code="w">(DE-627)130990515</subfield><subfield code="w">(DE-600)1080229-0</subfield><subfield code="w">(DE-576)029154286</subfield><subfield code="x">0924-669X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:11</subfield><subfield code="g">day:29</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:4485-4496</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10489-018-1223-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2018</subfield><subfield code="e">11</subfield><subfield code="b">29</subfield><subfield code="c">06</subfield><subfield code="h">4485-4496</subfield></datafield></record></collection>
|
score |
7.399824 |