An intuitionistic linguistic MCDM model based on probabilistic exceedance method and evidence theory
Abstract The optimization in multi-criteria decision making under uncertain conditions has attracted more and more scholars in recent years. However, it is still an open issue that how to better evaluate the satisfaction with more complex objects. Since the great performance of intuitionistic fuzzy...
Ausführliche Beschreibung
Autor*in: |
Liu, Zeyi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
Multi-criteria decision making |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied intelligence - Springer US, 1991, 50(2020), 6 vom: 21. Feb., Seite 1979-1995 |
---|---|
Übergeordnetes Werk: |
volume:50 ; year:2020 ; number:6 ; day:21 ; month:02 ; pages:1979-1995 |
Links: |
---|
DOI / URN: |
10.1007/s10489-020-01638-y |
---|
Katalog-ID: |
OLC2066109924 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2066109924 | ||
003 | DE-627 | ||
005 | 20230504135802.0 | ||
007 | tu | ||
008 | 200820s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10489-020-01638-y |2 doi | |
035 | |a (DE-627)OLC2066109924 | ||
035 | |a (DE-He213)s10489-020-01638-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Liu, Zeyi |e verfasserin |4 aut | |
245 | 1 | 0 | |a An intuitionistic linguistic MCDM model based on probabilistic exceedance method and evidence theory |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2020 | ||
520 | |a Abstract The optimization in multi-criteria decision making under uncertain conditions has attracted more and more scholars in recent years. However, it is still an open issue that how to better evaluate the satisfaction with more complex objects. Since the great performance of intuitionistic fuzzy set on handling the uncertain information, in this paper, a new fuzzy linguistic model for non-scalar criteria satisfaction expressed via intuitionistic fuzzy sets is proposed, which makes experts evaluate more objectively. Moreover, a corresponding aggregation approach based on the Choquet probabilistic exceedance method is also proposed. After a series of calculation processes, the final aggregated results embodied by intuitionistic fuzzy sets (IFSs) can be obtained. Then by converting them into the belief intervals, the best alternative can be selected more objectively. In addition, two real-life applications are shown to demonstrate the practicality of proposed method. | ||
650 | 4 | |a Fuzzy linguistic model | |
650 | 4 | |a Multi-criteria decision making | |
650 | 4 | |a Non-scalar criteria satisfaction | |
650 | 4 | |a Intuitionistic fuzzy sets | |
650 | 4 | |a Choquet probabilistic exceedance method | |
700 | 1 | |a Xiao, Fuyuan |0 (orcid)0000-0002-4304-7189 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied intelligence |d Springer US, 1991 |g 50(2020), 6 vom: 21. Feb., Seite 1979-1995 |w (DE-627)130990515 |w (DE-600)1080229-0 |w (DE-576)029154286 |x 0924-669X |7 nnns |
773 | 1 | 8 | |g volume:50 |g year:2020 |g number:6 |g day:21 |g month:02 |g pages:1979-1995 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10489-020-01638-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
951 | |a AR | ||
952 | |d 50 |j 2020 |e 6 |b 21 |c 02 |h 1979-1995 |
author_variant |
z l zl f x fx |
---|---|
matchkey_str |
article:0924669X:2020----::nnutoitcigitccmoebsdnrbblsieceacm |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10489-020-01638-y doi (DE-627)OLC2066109924 (DE-He213)s10489-020-01638-y-p DE-627 ger DE-627 rakwb eng 004 VZ Liu, Zeyi verfasserin aut An intuitionistic linguistic MCDM model based on probabilistic exceedance method and evidence theory 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract The optimization in multi-criteria decision making under uncertain conditions has attracted more and more scholars in recent years. However, it is still an open issue that how to better evaluate the satisfaction with more complex objects. Since the great performance of intuitionistic fuzzy set on handling the uncertain information, in this paper, a new fuzzy linguistic model for non-scalar criteria satisfaction expressed via intuitionistic fuzzy sets is proposed, which makes experts evaluate more objectively. Moreover, a corresponding aggregation approach based on the Choquet probabilistic exceedance method is also proposed. After a series of calculation processes, the final aggregated results embodied by intuitionistic fuzzy sets (IFSs) can be obtained. Then by converting them into the belief intervals, the best alternative can be selected more objectively. In addition, two real-life applications are shown to demonstrate the practicality of proposed method. Fuzzy linguistic model Multi-criteria decision making Non-scalar criteria satisfaction Intuitionistic fuzzy sets Choquet probabilistic exceedance method Xiao, Fuyuan (orcid)0000-0002-4304-7189 aut Enthalten in Applied intelligence Springer US, 1991 50(2020), 6 vom: 21. Feb., Seite 1979-1995 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:50 year:2020 number:6 day:21 month:02 pages:1979-1995 https://doi.org/10.1007/s10489-020-01638-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 50 2020 6 21 02 1979-1995 |
spelling |
10.1007/s10489-020-01638-y doi (DE-627)OLC2066109924 (DE-He213)s10489-020-01638-y-p DE-627 ger DE-627 rakwb eng 004 VZ Liu, Zeyi verfasserin aut An intuitionistic linguistic MCDM model based on probabilistic exceedance method and evidence theory 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract The optimization in multi-criteria decision making under uncertain conditions has attracted more and more scholars in recent years. However, it is still an open issue that how to better evaluate the satisfaction with more complex objects. Since the great performance of intuitionistic fuzzy set on handling the uncertain information, in this paper, a new fuzzy linguistic model for non-scalar criteria satisfaction expressed via intuitionistic fuzzy sets is proposed, which makes experts evaluate more objectively. Moreover, a corresponding aggregation approach based on the Choquet probabilistic exceedance method is also proposed. After a series of calculation processes, the final aggregated results embodied by intuitionistic fuzzy sets (IFSs) can be obtained. Then by converting them into the belief intervals, the best alternative can be selected more objectively. In addition, two real-life applications are shown to demonstrate the practicality of proposed method. Fuzzy linguistic model Multi-criteria decision making Non-scalar criteria satisfaction Intuitionistic fuzzy sets Choquet probabilistic exceedance method Xiao, Fuyuan (orcid)0000-0002-4304-7189 aut Enthalten in Applied intelligence Springer US, 1991 50(2020), 6 vom: 21. Feb., Seite 1979-1995 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:50 year:2020 number:6 day:21 month:02 pages:1979-1995 https://doi.org/10.1007/s10489-020-01638-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 50 2020 6 21 02 1979-1995 |
allfields_unstemmed |
10.1007/s10489-020-01638-y doi (DE-627)OLC2066109924 (DE-He213)s10489-020-01638-y-p DE-627 ger DE-627 rakwb eng 004 VZ Liu, Zeyi verfasserin aut An intuitionistic linguistic MCDM model based on probabilistic exceedance method and evidence theory 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract The optimization in multi-criteria decision making under uncertain conditions has attracted more and more scholars in recent years. However, it is still an open issue that how to better evaluate the satisfaction with more complex objects. Since the great performance of intuitionistic fuzzy set on handling the uncertain information, in this paper, a new fuzzy linguistic model for non-scalar criteria satisfaction expressed via intuitionistic fuzzy sets is proposed, which makes experts evaluate more objectively. Moreover, a corresponding aggregation approach based on the Choquet probabilistic exceedance method is also proposed. After a series of calculation processes, the final aggregated results embodied by intuitionistic fuzzy sets (IFSs) can be obtained. Then by converting them into the belief intervals, the best alternative can be selected more objectively. In addition, two real-life applications are shown to demonstrate the practicality of proposed method. Fuzzy linguistic model Multi-criteria decision making Non-scalar criteria satisfaction Intuitionistic fuzzy sets Choquet probabilistic exceedance method Xiao, Fuyuan (orcid)0000-0002-4304-7189 aut Enthalten in Applied intelligence Springer US, 1991 50(2020), 6 vom: 21. Feb., Seite 1979-1995 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:50 year:2020 number:6 day:21 month:02 pages:1979-1995 https://doi.org/10.1007/s10489-020-01638-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 50 2020 6 21 02 1979-1995 |
allfieldsGer |
10.1007/s10489-020-01638-y doi (DE-627)OLC2066109924 (DE-He213)s10489-020-01638-y-p DE-627 ger DE-627 rakwb eng 004 VZ Liu, Zeyi verfasserin aut An intuitionistic linguistic MCDM model based on probabilistic exceedance method and evidence theory 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract The optimization in multi-criteria decision making under uncertain conditions has attracted more and more scholars in recent years. However, it is still an open issue that how to better evaluate the satisfaction with more complex objects. Since the great performance of intuitionistic fuzzy set on handling the uncertain information, in this paper, a new fuzzy linguistic model for non-scalar criteria satisfaction expressed via intuitionistic fuzzy sets is proposed, which makes experts evaluate more objectively. Moreover, a corresponding aggregation approach based on the Choquet probabilistic exceedance method is also proposed. After a series of calculation processes, the final aggregated results embodied by intuitionistic fuzzy sets (IFSs) can be obtained. Then by converting them into the belief intervals, the best alternative can be selected more objectively. In addition, two real-life applications are shown to demonstrate the practicality of proposed method. Fuzzy linguistic model Multi-criteria decision making Non-scalar criteria satisfaction Intuitionistic fuzzy sets Choquet probabilistic exceedance method Xiao, Fuyuan (orcid)0000-0002-4304-7189 aut Enthalten in Applied intelligence Springer US, 1991 50(2020), 6 vom: 21. Feb., Seite 1979-1995 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:50 year:2020 number:6 day:21 month:02 pages:1979-1995 https://doi.org/10.1007/s10489-020-01638-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 50 2020 6 21 02 1979-1995 |
allfieldsSound |
10.1007/s10489-020-01638-y doi (DE-627)OLC2066109924 (DE-He213)s10489-020-01638-y-p DE-627 ger DE-627 rakwb eng 004 VZ Liu, Zeyi verfasserin aut An intuitionistic linguistic MCDM model based on probabilistic exceedance method and evidence theory 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract The optimization in multi-criteria decision making under uncertain conditions has attracted more and more scholars in recent years. However, it is still an open issue that how to better evaluate the satisfaction with more complex objects. Since the great performance of intuitionistic fuzzy set on handling the uncertain information, in this paper, a new fuzzy linguistic model for non-scalar criteria satisfaction expressed via intuitionistic fuzzy sets is proposed, which makes experts evaluate more objectively. Moreover, a corresponding aggregation approach based on the Choquet probabilistic exceedance method is also proposed. After a series of calculation processes, the final aggregated results embodied by intuitionistic fuzzy sets (IFSs) can be obtained. Then by converting them into the belief intervals, the best alternative can be selected more objectively. In addition, two real-life applications are shown to demonstrate the practicality of proposed method. Fuzzy linguistic model Multi-criteria decision making Non-scalar criteria satisfaction Intuitionistic fuzzy sets Choquet probabilistic exceedance method Xiao, Fuyuan (orcid)0000-0002-4304-7189 aut Enthalten in Applied intelligence Springer US, 1991 50(2020), 6 vom: 21. Feb., Seite 1979-1995 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:50 year:2020 number:6 day:21 month:02 pages:1979-1995 https://doi.org/10.1007/s10489-020-01638-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 50 2020 6 21 02 1979-1995 |
language |
English |
source |
Enthalten in Applied intelligence 50(2020), 6 vom: 21. Feb., Seite 1979-1995 volume:50 year:2020 number:6 day:21 month:02 pages:1979-1995 |
sourceStr |
Enthalten in Applied intelligence 50(2020), 6 vom: 21. Feb., Seite 1979-1995 volume:50 year:2020 number:6 day:21 month:02 pages:1979-1995 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fuzzy linguistic model Multi-criteria decision making Non-scalar criteria satisfaction Intuitionistic fuzzy sets Choquet probabilistic exceedance method |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Applied intelligence |
authorswithroles_txt_mv |
Liu, Zeyi @@aut@@ Xiao, Fuyuan @@aut@@ |
publishDateDaySort_date |
2020-02-21T00:00:00Z |
hierarchy_top_id |
130990515 |
dewey-sort |
14 |
id |
OLC2066109924 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2066109924</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504135802.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10489-020-01638-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2066109924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10489-020-01638-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Zeyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An intuitionistic linguistic MCDM model based on probabilistic exceedance method and evidence theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The optimization in multi-criteria decision making under uncertain conditions has attracted more and more scholars in recent years. However, it is still an open issue that how to better evaluate the satisfaction with more complex objects. Since the great performance of intuitionistic fuzzy set on handling the uncertain information, in this paper, a new fuzzy linguistic model for non-scalar criteria satisfaction expressed via intuitionistic fuzzy sets is proposed, which makes experts evaluate more objectively. Moreover, a corresponding aggregation approach based on the Choquet probabilistic exceedance method is also proposed. After a series of calculation processes, the final aggregated results embodied by intuitionistic fuzzy sets (IFSs) can be obtained. Then by converting them into the belief intervals, the best alternative can be selected more objectively. In addition, two real-life applications are shown to demonstrate the practicality of proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy linguistic model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-criteria decision making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-scalar criteria satisfaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intuitionistic fuzzy sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Choquet probabilistic exceedance method</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiao, Fuyuan</subfield><subfield code="0">(orcid)0000-0002-4304-7189</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied intelligence</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">50(2020), 6 vom: 21. Feb., Seite 1979-1995</subfield><subfield code="w">(DE-627)130990515</subfield><subfield code="w">(DE-600)1080229-0</subfield><subfield code="w">(DE-576)029154286</subfield><subfield code="x">0924-669X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6</subfield><subfield code="g">day:21</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1979-1995</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10489-020-01638-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2020</subfield><subfield code="e">6</subfield><subfield code="b">21</subfield><subfield code="c">02</subfield><subfield code="h">1979-1995</subfield></datafield></record></collection>
|
author |
Liu, Zeyi |
spellingShingle |
Liu, Zeyi ddc 004 misc Fuzzy linguistic model misc Multi-criteria decision making misc Non-scalar criteria satisfaction misc Intuitionistic fuzzy sets misc Choquet probabilistic exceedance method An intuitionistic linguistic MCDM model based on probabilistic exceedance method and evidence theory |
authorStr |
Liu, Zeyi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130990515 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-669X |
topic_title |
004 VZ An intuitionistic linguistic MCDM model based on probabilistic exceedance method and evidence theory Fuzzy linguistic model Multi-criteria decision making Non-scalar criteria satisfaction Intuitionistic fuzzy sets Choquet probabilistic exceedance method |
topic |
ddc 004 misc Fuzzy linguistic model misc Multi-criteria decision making misc Non-scalar criteria satisfaction misc Intuitionistic fuzzy sets misc Choquet probabilistic exceedance method |
topic_unstemmed |
ddc 004 misc Fuzzy linguistic model misc Multi-criteria decision making misc Non-scalar criteria satisfaction misc Intuitionistic fuzzy sets misc Choquet probabilistic exceedance method |
topic_browse |
ddc 004 misc Fuzzy linguistic model misc Multi-criteria decision making misc Non-scalar criteria satisfaction misc Intuitionistic fuzzy sets misc Choquet probabilistic exceedance method |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied intelligence |
hierarchy_parent_id |
130990515 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Applied intelligence |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 |
title |
An intuitionistic linguistic MCDM model based on probabilistic exceedance method and evidence theory |
ctrlnum |
(DE-627)OLC2066109924 (DE-He213)s10489-020-01638-y-p |
title_full |
An intuitionistic linguistic MCDM model based on probabilistic exceedance method and evidence theory |
author_sort |
Liu, Zeyi |
journal |
Applied intelligence |
journalStr |
Applied intelligence |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
1979 |
author_browse |
Liu, Zeyi Xiao, Fuyuan |
container_volume |
50 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Liu, Zeyi |
doi_str_mv |
10.1007/s10489-020-01638-y |
normlink |
(ORCID)0000-0002-4304-7189 |
normlink_prefix_str_mv |
(orcid)0000-0002-4304-7189 |
dewey-full |
004 |
title_sort |
an intuitionistic linguistic mcdm model based on probabilistic exceedance method and evidence theory |
title_auth |
An intuitionistic linguistic MCDM model based on probabilistic exceedance method and evidence theory |
abstract |
Abstract The optimization in multi-criteria decision making under uncertain conditions has attracted more and more scholars in recent years. However, it is still an open issue that how to better evaluate the satisfaction with more complex objects. Since the great performance of intuitionistic fuzzy set on handling the uncertain information, in this paper, a new fuzzy linguistic model for non-scalar criteria satisfaction expressed via intuitionistic fuzzy sets is proposed, which makes experts evaluate more objectively. Moreover, a corresponding aggregation approach based on the Choquet probabilistic exceedance method is also proposed. After a series of calculation processes, the final aggregated results embodied by intuitionistic fuzzy sets (IFSs) can be obtained. Then by converting them into the belief intervals, the best alternative can be selected more objectively. In addition, two real-life applications are shown to demonstrate the practicality of proposed method. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstractGer |
Abstract The optimization in multi-criteria decision making under uncertain conditions has attracted more and more scholars in recent years. However, it is still an open issue that how to better evaluate the satisfaction with more complex objects. Since the great performance of intuitionistic fuzzy set on handling the uncertain information, in this paper, a new fuzzy linguistic model for non-scalar criteria satisfaction expressed via intuitionistic fuzzy sets is proposed, which makes experts evaluate more objectively. Moreover, a corresponding aggregation approach based on the Choquet probabilistic exceedance method is also proposed. After a series of calculation processes, the final aggregated results embodied by intuitionistic fuzzy sets (IFSs) can be obtained. Then by converting them into the belief intervals, the best alternative can be selected more objectively. In addition, two real-life applications are shown to demonstrate the practicality of proposed method. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstract_unstemmed |
Abstract The optimization in multi-criteria decision making under uncertain conditions has attracted more and more scholars in recent years. However, it is still an open issue that how to better evaluate the satisfaction with more complex objects. Since the great performance of intuitionistic fuzzy set on handling the uncertain information, in this paper, a new fuzzy linguistic model for non-scalar criteria satisfaction expressed via intuitionistic fuzzy sets is proposed, which makes experts evaluate more objectively. Moreover, a corresponding aggregation approach based on the Choquet probabilistic exceedance method is also proposed. After a series of calculation processes, the final aggregated results embodied by intuitionistic fuzzy sets (IFSs) can be obtained. Then by converting them into the belief intervals, the best alternative can be selected more objectively. In addition, two real-life applications are shown to demonstrate the practicality of proposed method. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT |
container_issue |
6 |
title_short |
An intuitionistic linguistic MCDM model based on probabilistic exceedance method and evidence theory |
url |
https://doi.org/10.1007/s10489-020-01638-y |
remote_bool |
false |
author2 |
Xiao, Fuyuan |
author2Str |
Xiao, Fuyuan |
ppnlink |
130990515 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10489-020-01638-y |
up_date |
2024-07-04T03:47:21.664Z |
_version_ |
1803618711413719040 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2066109924</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504135802.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10489-020-01638-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2066109924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10489-020-01638-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Zeyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An intuitionistic linguistic MCDM model based on probabilistic exceedance method and evidence theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The optimization in multi-criteria decision making under uncertain conditions has attracted more and more scholars in recent years. However, it is still an open issue that how to better evaluate the satisfaction with more complex objects. Since the great performance of intuitionistic fuzzy set on handling the uncertain information, in this paper, a new fuzzy linguistic model for non-scalar criteria satisfaction expressed via intuitionistic fuzzy sets is proposed, which makes experts evaluate more objectively. Moreover, a corresponding aggregation approach based on the Choquet probabilistic exceedance method is also proposed. After a series of calculation processes, the final aggregated results embodied by intuitionistic fuzzy sets (IFSs) can be obtained. Then by converting them into the belief intervals, the best alternative can be selected more objectively. In addition, two real-life applications are shown to demonstrate the practicality of proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy linguistic model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-criteria decision making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-scalar criteria satisfaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intuitionistic fuzzy sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Choquet probabilistic exceedance method</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiao, Fuyuan</subfield><subfield code="0">(orcid)0000-0002-4304-7189</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied intelligence</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">50(2020), 6 vom: 21. Feb., Seite 1979-1995</subfield><subfield code="w">(DE-627)130990515</subfield><subfield code="w">(DE-600)1080229-0</subfield><subfield code="w">(DE-576)029154286</subfield><subfield code="x">0924-669X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6</subfield><subfield code="g">day:21</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1979-1995</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10489-020-01638-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2020</subfield><subfield code="e">6</subfield><subfield code="b">21</subfield><subfield code="c">02</subfield><subfield code="h">1979-1995</subfield></datafield></record></collection>
|
score |
7.4010687 |