A two-dimensional study for cooling and self-gravitating accretion discs
Abstract The importance of cooling for the structure and evolution of self-gravitating accretion discs has been confirmed through the use of direct numerical simulations. In this paper, we present a two-dimensional study for self-gravitating accretion discs, to investigate the influence of the cooli...
Ausführliche Beschreibung
Autor*in: |
Faghei, Kazem [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media Dordrecht 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Astrophysics and space science - Springer Netherlands, 1968, 353(2014), 2 vom: 01. Okt., Seite 641-649 |
---|---|
Übergeordnetes Werk: |
volume:353 ; year:2014 ; number:2 ; day:01 ; month:10 ; pages:641-649 |
Links: |
---|
DOI / URN: |
10.1007/s10509-014-2035-3 |
---|
Katalog-ID: |
OLC2066275581 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2066275581 | ||
003 | DE-627 | ||
005 | 20230502213808.0 | ||
007 | tu | ||
008 | 200820s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10509-014-2035-3 |2 doi | |
035 | |a (DE-627)OLC2066275581 | ||
035 | |a (DE-He213)s10509-014-2035-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 520 |a 530 |a 620 |q VZ |
084 | |a 16,12 |2 ssgn | ||
100 | 1 | |a Faghei, Kazem |e verfasserin |4 aut | |
245 | 1 | 0 | |a A two-dimensional study for cooling and self-gravitating accretion discs |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media Dordrecht 2014 | ||
520 | |a Abstract The importance of cooling for the structure and evolution of self-gravitating accretion discs has been confirmed through the use of direct numerical simulations. In this paper, we present a two-dimensional study for self-gravitating accretion discs, to investigate the influence of the cooling rate on the latitudinal structure of such accretion discs. The disc is cooled using a simple parametrization for the cooling function, (de/dt)cool=−e/tcool with e as the internal energy and tcool as the cooling timescale. The cooling timescale is in units of the dynamical timescale, tdyn[=Ω−1], is Ωtcool=β, where β is a free parameter. The mechanism of energy dissipation is assumed to be turbulent viscosity in the disc and an α-prescription is applied for the kinematic coefficient of viscosity. To study the gravitational stability of the self-gravitating disc, we use the Toomre parameter. We obtain the radial dependence of the physical variables through the use of a self-similar method and we numerically solve the equations to obtain the latitudinal dependence of the physical variables. The solutions show that the radial velocity is smaller than the Keplerian rotational velocity; however, the disc, dependent on the values of parameters α and β and only near the zone close to the equatorial plane, can rotate in a super-Keplerian manner. With the magnitude of both parameters α and β, the disc thickness increases due to the increase of the vertical pressure gradient. The dependence of the gas density on the parameters α and β indicates two zones in the accretion disc. In the first zone near the equatorial plane, the mass density decreases by increasing these parameters. However, in the second zone, the regions with higher latitude, the mass density increases with the magnitude of parameters α and β. | ||
650 | 4 | |a Accretion | |
650 | 4 | |a Accretion discs | |
650 | 4 | |a Planetary systems: protoplanetary discs | |
650 | 4 | |a Planetary systems: formation | |
700 | 1 | |a Pak, Milad |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Astrophysics and space science |d Springer Netherlands, 1968 |g 353(2014), 2 vom: 01. Okt., Seite 641-649 |w (DE-627)129062723 |w (DE-600)629-4 |w (DE-576)014393522 |x 0004-640X |7 nnns |
773 | 1 | 8 | |g volume:353 |g year:2014 |g number:2 |g day:01 |g month:10 |g pages:641-649 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10509-014-2035-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-AST | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_4012 | ||
951 | |a AR | ||
952 | |d 353 |j 2014 |e 2 |b 01 |c 10 |h 641-649 |
author_variant |
k f kf m p mp |
---|---|
matchkey_str |
article:0004640X:2014----::toiesoasuyocoignslgaia |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s10509-014-2035-3 doi (DE-627)OLC2066275581 (DE-He213)s10509-014-2035-3-p DE-627 ger DE-627 rakwb eng 520 530 620 VZ 16,12 ssgn Faghei, Kazem verfasserin aut A two-dimensional study for cooling and self-gravitating accretion discs 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2014 Abstract The importance of cooling for the structure and evolution of self-gravitating accretion discs has been confirmed through the use of direct numerical simulations. In this paper, we present a two-dimensional study for self-gravitating accretion discs, to investigate the influence of the cooling rate on the latitudinal structure of such accretion discs. The disc is cooled using a simple parametrization for the cooling function, (de/dt)cool=−e/tcool with e as the internal energy and tcool as the cooling timescale. The cooling timescale is in units of the dynamical timescale, tdyn[=Ω−1], is Ωtcool=β, where β is a free parameter. The mechanism of energy dissipation is assumed to be turbulent viscosity in the disc and an α-prescription is applied for the kinematic coefficient of viscosity. To study the gravitational stability of the self-gravitating disc, we use the Toomre parameter. We obtain the radial dependence of the physical variables through the use of a self-similar method and we numerically solve the equations to obtain the latitudinal dependence of the physical variables. The solutions show that the radial velocity is smaller than the Keplerian rotational velocity; however, the disc, dependent on the values of parameters α and β and only near the zone close to the equatorial plane, can rotate in a super-Keplerian manner. With the magnitude of both parameters α and β, the disc thickness increases due to the increase of the vertical pressure gradient. The dependence of the gas density on the parameters α and β indicates two zones in the accretion disc. In the first zone near the equatorial plane, the mass density decreases by increasing these parameters. However, in the second zone, the regions with higher latitude, the mass density increases with the magnitude of parameters α and β. Accretion Accretion discs Planetary systems: protoplanetary discs Planetary systems: formation Pak, Milad aut Enthalten in Astrophysics and space science Springer Netherlands, 1968 353(2014), 2 vom: 01. Okt., Seite 641-649 (DE-627)129062723 (DE-600)629-4 (DE-576)014393522 0004-640X nnns volume:353 year:2014 number:2 day:01 month:10 pages:641-649 https://doi.org/10.1007/s10509-014-2035-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4012 AR 353 2014 2 01 10 641-649 |
spelling |
10.1007/s10509-014-2035-3 doi (DE-627)OLC2066275581 (DE-He213)s10509-014-2035-3-p DE-627 ger DE-627 rakwb eng 520 530 620 VZ 16,12 ssgn Faghei, Kazem verfasserin aut A two-dimensional study for cooling and self-gravitating accretion discs 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2014 Abstract The importance of cooling for the structure and evolution of self-gravitating accretion discs has been confirmed through the use of direct numerical simulations. In this paper, we present a two-dimensional study for self-gravitating accretion discs, to investigate the influence of the cooling rate on the latitudinal structure of such accretion discs. The disc is cooled using a simple parametrization for the cooling function, (de/dt)cool=−e/tcool with e as the internal energy and tcool as the cooling timescale. The cooling timescale is in units of the dynamical timescale, tdyn[=Ω−1], is Ωtcool=β, where β is a free parameter. The mechanism of energy dissipation is assumed to be turbulent viscosity in the disc and an α-prescription is applied for the kinematic coefficient of viscosity. To study the gravitational stability of the self-gravitating disc, we use the Toomre parameter. We obtain the radial dependence of the physical variables through the use of a self-similar method and we numerically solve the equations to obtain the latitudinal dependence of the physical variables. The solutions show that the radial velocity is smaller than the Keplerian rotational velocity; however, the disc, dependent on the values of parameters α and β and only near the zone close to the equatorial plane, can rotate in a super-Keplerian manner. With the magnitude of both parameters α and β, the disc thickness increases due to the increase of the vertical pressure gradient. The dependence of the gas density on the parameters α and β indicates two zones in the accretion disc. In the first zone near the equatorial plane, the mass density decreases by increasing these parameters. However, in the second zone, the regions with higher latitude, the mass density increases with the magnitude of parameters α and β. Accretion Accretion discs Planetary systems: protoplanetary discs Planetary systems: formation Pak, Milad aut Enthalten in Astrophysics and space science Springer Netherlands, 1968 353(2014), 2 vom: 01. Okt., Seite 641-649 (DE-627)129062723 (DE-600)629-4 (DE-576)014393522 0004-640X nnns volume:353 year:2014 number:2 day:01 month:10 pages:641-649 https://doi.org/10.1007/s10509-014-2035-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4012 AR 353 2014 2 01 10 641-649 |
allfields_unstemmed |
10.1007/s10509-014-2035-3 doi (DE-627)OLC2066275581 (DE-He213)s10509-014-2035-3-p DE-627 ger DE-627 rakwb eng 520 530 620 VZ 16,12 ssgn Faghei, Kazem verfasserin aut A two-dimensional study for cooling and self-gravitating accretion discs 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2014 Abstract The importance of cooling for the structure and evolution of self-gravitating accretion discs has been confirmed through the use of direct numerical simulations. In this paper, we present a two-dimensional study for self-gravitating accretion discs, to investigate the influence of the cooling rate on the latitudinal structure of such accretion discs. The disc is cooled using a simple parametrization for the cooling function, (de/dt)cool=−e/tcool with e as the internal energy and tcool as the cooling timescale. The cooling timescale is in units of the dynamical timescale, tdyn[=Ω−1], is Ωtcool=β, where β is a free parameter. The mechanism of energy dissipation is assumed to be turbulent viscosity in the disc and an α-prescription is applied for the kinematic coefficient of viscosity. To study the gravitational stability of the self-gravitating disc, we use the Toomre parameter. We obtain the radial dependence of the physical variables through the use of a self-similar method and we numerically solve the equations to obtain the latitudinal dependence of the physical variables. The solutions show that the radial velocity is smaller than the Keplerian rotational velocity; however, the disc, dependent on the values of parameters α and β and only near the zone close to the equatorial plane, can rotate in a super-Keplerian manner. With the magnitude of both parameters α and β, the disc thickness increases due to the increase of the vertical pressure gradient. The dependence of the gas density on the parameters α and β indicates two zones in the accretion disc. In the first zone near the equatorial plane, the mass density decreases by increasing these parameters. However, in the second zone, the regions with higher latitude, the mass density increases with the magnitude of parameters α and β. Accretion Accretion discs Planetary systems: protoplanetary discs Planetary systems: formation Pak, Milad aut Enthalten in Astrophysics and space science Springer Netherlands, 1968 353(2014), 2 vom: 01. Okt., Seite 641-649 (DE-627)129062723 (DE-600)629-4 (DE-576)014393522 0004-640X nnns volume:353 year:2014 number:2 day:01 month:10 pages:641-649 https://doi.org/10.1007/s10509-014-2035-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4012 AR 353 2014 2 01 10 641-649 |
allfieldsGer |
10.1007/s10509-014-2035-3 doi (DE-627)OLC2066275581 (DE-He213)s10509-014-2035-3-p DE-627 ger DE-627 rakwb eng 520 530 620 VZ 16,12 ssgn Faghei, Kazem verfasserin aut A two-dimensional study for cooling and self-gravitating accretion discs 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2014 Abstract The importance of cooling for the structure and evolution of self-gravitating accretion discs has been confirmed through the use of direct numerical simulations. In this paper, we present a two-dimensional study for self-gravitating accretion discs, to investigate the influence of the cooling rate on the latitudinal structure of such accretion discs. The disc is cooled using a simple parametrization for the cooling function, (de/dt)cool=−e/tcool with e as the internal energy and tcool as the cooling timescale. The cooling timescale is in units of the dynamical timescale, tdyn[=Ω−1], is Ωtcool=β, where β is a free parameter. The mechanism of energy dissipation is assumed to be turbulent viscosity in the disc and an α-prescription is applied for the kinematic coefficient of viscosity. To study the gravitational stability of the self-gravitating disc, we use the Toomre parameter. We obtain the radial dependence of the physical variables through the use of a self-similar method and we numerically solve the equations to obtain the latitudinal dependence of the physical variables. The solutions show that the radial velocity is smaller than the Keplerian rotational velocity; however, the disc, dependent on the values of parameters α and β and only near the zone close to the equatorial plane, can rotate in a super-Keplerian manner. With the magnitude of both parameters α and β, the disc thickness increases due to the increase of the vertical pressure gradient. The dependence of the gas density on the parameters α and β indicates two zones in the accretion disc. In the first zone near the equatorial plane, the mass density decreases by increasing these parameters. However, in the second zone, the regions with higher latitude, the mass density increases with the magnitude of parameters α and β. Accretion Accretion discs Planetary systems: protoplanetary discs Planetary systems: formation Pak, Milad aut Enthalten in Astrophysics and space science Springer Netherlands, 1968 353(2014), 2 vom: 01. Okt., Seite 641-649 (DE-627)129062723 (DE-600)629-4 (DE-576)014393522 0004-640X nnns volume:353 year:2014 number:2 day:01 month:10 pages:641-649 https://doi.org/10.1007/s10509-014-2035-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4012 AR 353 2014 2 01 10 641-649 |
allfieldsSound |
10.1007/s10509-014-2035-3 doi (DE-627)OLC2066275581 (DE-He213)s10509-014-2035-3-p DE-627 ger DE-627 rakwb eng 520 530 620 VZ 16,12 ssgn Faghei, Kazem verfasserin aut A two-dimensional study for cooling and self-gravitating accretion discs 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2014 Abstract The importance of cooling for the structure and evolution of self-gravitating accretion discs has been confirmed through the use of direct numerical simulations. In this paper, we present a two-dimensional study for self-gravitating accretion discs, to investigate the influence of the cooling rate on the latitudinal structure of such accretion discs. The disc is cooled using a simple parametrization for the cooling function, (de/dt)cool=−e/tcool with e as the internal energy and tcool as the cooling timescale. The cooling timescale is in units of the dynamical timescale, tdyn[=Ω−1], is Ωtcool=β, where β is a free parameter. The mechanism of energy dissipation is assumed to be turbulent viscosity in the disc and an α-prescription is applied for the kinematic coefficient of viscosity. To study the gravitational stability of the self-gravitating disc, we use the Toomre parameter. We obtain the radial dependence of the physical variables through the use of a self-similar method and we numerically solve the equations to obtain the latitudinal dependence of the physical variables. The solutions show that the radial velocity is smaller than the Keplerian rotational velocity; however, the disc, dependent on the values of parameters α and β and only near the zone close to the equatorial plane, can rotate in a super-Keplerian manner. With the magnitude of both parameters α and β, the disc thickness increases due to the increase of the vertical pressure gradient. The dependence of the gas density on the parameters α and β indicates two zones in the accretion disc. In the first zone near the equatorial plane, the mass density decreases by increasing these parameters. However, in the second zone, the regions with higher latitude, the mass density increases with the magnitude of parameters α and β. Accretion Accretion discs Planetary systems: protoplanetary discs Planetary systems: formation Pak, Milad aut Enthalten in Astrophysics and space science Springer Netherlands, 1968 353(2014), 2 vom: 01. Okt., Seite 641-649 (DE-627)129062723 (DE-600)629-4 (DE-576)014393522 0004-640X nnns volume:353 year:2014 number:2 day:01 month:10 pages:641-649 https://doi.org/10.1007/s10509-014-2035-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4012 AR 353 2014 2 01 10 641-649 |
language |
English |
source |
Enthalten in Astrophysics and space science 353(2014), 2 vom: 01. Okt., Seite 641-649 volume:353 year:2014 number:2 day:01 month:10 pages:641-649 |
sourceStr |
Enthalten in Astrophysics and space science 353(2014), 2 vom: 01. Okt., Seite 641-649 volume:353 year:2014 number:2 day:01 month:10 pages:641-649 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Accretion Accretion discs Planetary systems: protoplanetary discs Planetary systems: formation |
dewey-raw |
520 |
isfreeaccess_bool |
false |
container_title |
Astrophysics and space science |
authorswithroles_txt_mv |
Faghei, Kazem @@aut@@ Pak, Milad @@aut@@ |
publishDateDaySort_date |
2014-10-01T00:00:00Z |
hierarchy_top_id |
129062723 |
dewey-sort |
3520 |
id |
OLC2066275581 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2066275581</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502213808.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10509-014-2035-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2066275581</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10509-014-2035-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Faghei, Kazem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A two-dimensional study for cooling and self-gravitating accretion discs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The importance of cooling for the structure and evolution of self-gravitating accretion discs has been confirmed through the use of direct numerical simulations. In this paper, we present a two-dimensional study for self-gravitating accretion discs, to investigate the influence of the cooling rate on the latitudinal structure of such accretion discs. The disc is cooled using a simple parametrization for the cooling function, (de/dt)cool=−e/tcool with e as the internal energy and tcool as the cooling timescale. The cooling timescale is in units of the dynamical timescale, tdyn[=Ω−1], is Ωtcool=β, where β is a free parameter. The mechanism of energy dissipation is assumed to be turbulent viscosity in the disc and an α-prescription is applied for the kinematic coefficient of viscosity. To study the gravitational stability of the self-gravitating disc, we use the Toomre parameter. We obtain the radial dependence of the physical variables through the use of a self-similar method and we numerically solve the equations to obtain the latitudinal dependence of the physical variables. The solutions show that the radial velocity is smaller than the Keplerian rotational velocity; however, the disc, dependent on the values of parameters α and β and only near the zone close to the equatorial plane, can rotate in a super-Keplerian manner. With the magnitude of both parameters α and β, the disc thickness increases due to the increase of the vertical pressure gradient. The dependence of the gas density on the parameters α and β indicates two zones in the accretion disc. In the first zone near the equatorial plane, the mass density decreases by increasing these parameters. However, in the second zone, the regions with higher latitude, the mass density increases with the magnitude of parameters α and β.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accretion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accretion discs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Planetary systems: protoplanetary discs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Planetary systems: formation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pak, Milad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Astrophysics and space science</subfield><subfield code="d">Springer Netherlands, 1968</subfield><subfield code="g">353(2014), 2 vom: 01. Okt., Seite 641-649</subfield><subfield code="w">(DE-627)129062723</subfield><subfield code="w">(DE-600)629-4</subfield><subfield code="w">(DE-576)014393522</subfield><subfield code="x">0004-640X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:353</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:2</subfield><subfield code="g">day:01</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:641-649</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10509-014-2035-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">353</subfield><subfield code="j">2014</subfield><subfield code="e">2</subfield><subfield code="b">01</subfield><subfield code="c">10</subfield><subfield code="h">641-649</subfield></datafield></record></collection>
|
author |
Faghei, Kazem |
spellingShingle |
Faghei, Kazem ddc 520 ssgn 16,12 misc Accretion misc Accretion discs misc Planetary systems: protoplanetary discs misc Planetary systems: formation A two-dimensional study for cooling and self-gravitating accretion discs |
authorStr |
Faghei, Kazem |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129062723 |
format |
Article |
dewey-ones |
520 - Astronomy & allied sciences 530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0004-640X |
topic_title |
520 530 620 VZ 16,12 ssgn A two-dimensional study for cooling and self-gravitating accretion discs Accretion Accretion discs Planetary systems: protoplanetary discs Planetary systems: formation |
topic |
ddc 520 ssgn 16,12 misc Accretion misc Accretion discs misc Planetary systems: protoplanetary discs misc Planetary systems: formation |
topic_unstemmed |
ddc 520 ssgn 16,12 misc Accretion misc Accretion discs misc Planetary systems: protoplanetary discs misc Planetary systems: formation |
topic_browse |
ddc 520 ssgn 16,12 misc Accretion misc Accretion discs misc Planetary systems: protoplanetary discs misc Planetary systems: formation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Astrophysics and space science |
hierarchy_parent_id |
129062723 |
dewey-tens |
520 - Astronomy 530 - Physics 620 - Engineering |
hierarchy_top_title |
Astrophysics and space science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129062723 (DE-600)629-4 (DE-576)014393522 |
title |
A two-dimensional study for cooling and self-gravitating accretion discs |
ctrlnum |
(DE-627)OLC2066275581 (DE-He213)s10509-014-2035-3-p |
title_full |
A two-dimensional study for cooling and self-gravitating accretion discs |
author_sort |
Faghei, Kazem |
journal |
Astrophysics and space science |
journalStr |
Astrophysics and space science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
641 |
author_browse |
Faghei, Kazem Pak, Milad |
container_volume |
353 |
class |
520 530 620 VZ 16,12 ssgn |
format_se |
Aufsätze |
author-letter |
Faghei, Kazem |
doi_str_mv |
10.1007/s10509-014-2035-3 |
dewey-full |
520 530 620 |
title_sort |
a two-dimensional study for cooling and self-gravitating accretion discs |
title_auth |
A two-dimensional study for cooling and self-gravitating accretion discs |
abstract |
Abstract The importance of cooling for the structure and evolution of self-gravitating accretion discs has been confirmed through the use of direct numerical simulations. In this paper, we present a two-dimensional study for self-gravitating accretion discs, to investigate the influence of the cooling rate on the latitudinal structure of such accretion discs. The disc is cooled using a simple parametrization for the cooling function, (de/dt)cool=−e/tcool with e as the internal energy and tcool as the cooling timescale. The cooling timescale is in units of the dynamical timescale, tdyn[=Ω−1], is Ωtcool=β, where β is a free parameter. The mechanism of energy dissipation is assumed to be turbulent viscosity in the disc and an α-prescription is applied for the kinematic coefficient of viscosity. To study the gravitational stability of the self-gravitating disc, we use the Toomre parameter. We obtain the radial dependence of the physical variables through the use of a self-similar method and we numerically solve the equations to obtain the latitudinal dependence of the physical variables. The solutions show that the radial velocity is smaller than the Keplerian rotational velocity; however, the disc, dependent on the values of parameters α and β and only near the zone close to the equatorial plane, can rotate in a super-Keplerian manner. With the magnitude of both parameters α and β, the disc thickness increases due to the increase of the vertical pressure gradient. The dependence of the gas density on the parameters α and β indicates two zones in the accretion disc. In the first zone near the equatorial plane, the mass density decreases by increasing these parameters. However, in the second zone, the regions with higher latitude, the mass density increases with the magnitude of parameters α and β. © Springer Science+Business Media Dordrecht 2014 |
abstractGer |
Abstract The importance of cooling for the structure and evolution of self-gravitating accretion discs has been confirmed through the use of direct numerical simulations. In this paper, we present a two-dimensional study for self-gravitating accretion discs, to investigate the influence of the cooling rate on the latitudinal structure of such accretion discs. The disc is cooled using a simple parametrization for the cooling function, (de/dt)cool=−e/tcool with e as the internal energy and tcool as the cooling timescale. The cooling timescale is in units of the dynamical timescale, tdyn[=Ω−1], is Ωtcool=β, where β is a free parameter. The mechanism of energy dissipation is assumed to be turbulent viscosity in the disc and an α-prescription is applied for the kinematic coefficient of viscosity. To study the gravitational stability of the self-gravitating disc, we use the Toomre parameter. We obtain the radial dependence of the physical variables through the use of a self-similar method and we numerically solve the equations to obtain the latitudinal dependence of the physical variables. The solutions show that the radial velocity is smaller than the Keplerian rotational velocity; however, the disc, dependent on the values of parameters α and β and only near the zone close to the equatorial plane, can rotate in a super-Keplerian manner. With the magnitude of both parameters α and β, the disc thickness increases due to the increase of the vertical pressure gradient. The dependence of the gas density on the parameters α and β indicates two zones in the accretion disc. In the first zone near the equatorial plane, the mass density decreases by increasing these parameters. However, in the second zone, the regions with higher latitude, the mass density increases with the magnitude of parameters α and β. © Springer Science+Business Media Dordrecht 2014 |
abstract_unstemmed |
Abstract The importance of cooling for the structure and evolution of self-gravitating accretion discs has been confirmed through the use of direct numerical simulations. In this paper, we present a two-dimensional study for self-gravitating accretion discs, to investigate the influence of the cooling rate on the latitudinal structure of such accretion discs. The disc is cooled using a simple parametrization for the cooling function, (de/dt)cool=−e/tcool with e as the internal energy and tcool as the cooling timescale. The cooling timescale is in units of the dynamical timescale, tdyn[=Ω−1], is Ωtcool=β, where β is a free parameter. The mechanism of energy dissipation is assumed to be turbulent viscosity in the disc and an α-prescription is applied for the kinematic coefficient of viscosity. To study the gravitational stability of the self-gravitating disc, we use the Toomre parameter. We obtain the radial dependence of the physical variables through the use of a self-similar method and we numerically solve the equations to obtain the latitudinal dependence of the physical variables. The solutions show that the radial velocity is smaller than the Keplerian rotational velocity; however, the disc, dependent on the values of parameters α and β and only near the zone close to the equatorial plane, can rotate in a super-Keplerian manner. With the magnitude of both parameters α and β, the disc thickness increases due to the increase of the vertical pressure gradient. The dependence of the gas density on the parameters α and β indicates two zones in the accretion disc. In the first zone near the equatorial plane, the mass density decreases by increasing these parameters. However, in the second zone, the regions with higher latitude, the mass density increases with the magnitude of parameters α and β. © Springer Science+Business Media Dordrecht 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4012 |
container_issue |
2 |
title_short |
A two-dimensional study for cooling and self-gravitating accretion discs |
url |
https://doi.org/10.1007/s10509-014-2035-3 |
remote_bool |
false |
author2 |
Pak, Milad |
author2Str |
Pak, Milad |
ppnlink |
129062723 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10509-014-2035-3 |
up_date |
2024-07-04T04:07:55.489Z |
_version_ |
1803620005176147968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2066275581</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502213808.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10509-014-2035-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2066275581</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10509-014-2035-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Faghei, Kazem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A two-dimensional study for cooling and self-gravitating accretion discs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The importance of cooling for the structure and evolution of self-gravitating accretion discs has been confirmed through the use of direct numerical simulations. In this paper, we present a two-dimensional study for self-gravitating accretion discs, to investigate the influence of the cooling rate on the latitudinal structure of such accretion discs. The disc is cooled using a simple parametrization for the cooling function, (de/dt)cool=−e/tcool with e as the internal energy and tcool as the cooling timescale. The cooling timescale is in units of the dynamical timescale, tdyn[=Ω−1], is Ωtcool=β, where β is a free parameter. The mechanism of energy dissipation is assumed to be turbulent viscosity in the disc and an α-prescription is applied for the kinematic coefficient of viscosity. To study the gravitational stability of the self-gravitating disc, we use the Toomre parameter. We obtain the radial dependence of the physical variables through the use of a self-similar method and we numerically solve the equations to obtain the latitudinal dependence of the physical variables. The solutions show that the radial velocity is smaller than the Keplerian rotational velocity; however, the disc, dependent on the values of parameters α and β and only near the zone close to the equatorial plane, can rotate in a super-Keplerian manner. With the magnitude of both parameters α and β, the disc thickness increases due to the increase of the vertical pressure gradient. The dependence of the gas density on the parameters α and β indicates two zones in the accretion disc. In the first zone near the equatorial plane, the mass density decreases by increasing these parameters. However, in the second zone, the regions with higher latitude, the mass density increases with the magnitude of parameters α and β.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accretion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accretion discs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Planetary systems: protoplanetary discs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Planetary systems: formation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pak, Milad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Astrophysics and space science</subfield><subfield code="d">Springer Netherlands, 1968</subfield><subfield code="g">353(2014), 2 vom: 01. Okt., Seite 641-649</subfield><subfield code="w">(DE-627)129062723</subfield><subfield code="w">(DE-600)629-4</subfield><subfield code="w">(DE-576)014393522</subfield><subfield code="x">0004-640X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:353</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:2</subfield><subfield code="g">day:01</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:641-649</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10509-014-2035-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">353</subfield><subfield code="j">2014</subfield><subfield code="e">2</subfield><subfield code="b">01</subfield><subfield code="c">10</subfield><subfield code="h">641-649</subfield></datafield></record></collection>
|
score |
7.4023743 |