Towards operational cost minimization for cloud bursting with deadline constraints in hybrid clouds
Abstract In hybrid clouds, there is a technique named cloud bursting which can allow companies to expand their capacity to meet the demands of peak workloads in a low-priced manner. In this work, a cost-aware job scheduling approach based on queueing theory in hybrid clouds is proposed. The job sche...
Ausführliche Beschreibung
Autor*in: |
Li, Chunlin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Cluster computing - Springer US, 1998, 21(2018), 4 vom: 25. Aug., Seite 2013-2029 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2018 ; number:4 ; day:25 ; month:08 ; pages:2013-2029 |
Links: |
---|
DOI / URN: |
10.1007/s10586-018-2841-4 |
---|
Katalog-ID: |
OLC2066391026 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2066391026 | ||
003 | DE-627 | ||
005 | 20230503024842.0 | ||
007 | tu | ||
008 | 200819s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10586-018-2841-4 |2 doi | |
035 | |a (DE-627)OLC2066391026 | ||
035 | |a (DE-He213)s10586-018-2841-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 54.50$jProgrammierung: Allgemeines |2 bkl | ||
084 | |a 54.32$jRechnerkommunikation |2 bkl | ||
084 | |a 54.25$jParallele Datenverarbeitung |2 bkl | ||
100 | 1 | |a Li, Chunlin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Towards operational cost minimization for cloud bursting with deadline constraints in hybrid clouds |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2018 | ||
520 | |a Abstract In hybrid clouds, there is a technique named cloud bursting which can allow companies to expand their capacity to meet the demands of peak workloads in a low-priced manner. In this work, a cost-aware job scheduling approach based on queueing theory in hybrid clouds is proposed. The job scheduling problem in the private cloud is modeled as a queueing model. A genetic algorithm is applied to achieve optimal queues for jobs to improve the utilization rate of the private cloud. Then, the task execution time is predicted by back propagation neural network. The max–min strategy is applied to schedule tasks according to the prediction results in hybrid clouds. Experiments show that our cost-aware job scheduling algorithm can reduce the average job waiting time and average job response time in the private cloud. In additional, our proposed job scheduling algorithm can improve the system throughput of the private cloud. It also can reduce the average task waiting time, average task response time and total costs in hybrid clouds. | ||
650 | 4 | |a Hybrid clouds | |
650 | 4 | |a Cloud bursting | |
650 | 4 | |a Load balancing | |
650 | 4 | |a Genetic algorithm | |
650 | 4 | |a BP neural network | |
700 | 1 | |a Tang, Jianhang |4 aut | |
700 | 1 | |a Luo, Youlong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Cluster computing |d Springer US, 1998 |g 21(2018), 4 vom: 25. Aug., Seite 2013-2029 |w (DE-627)265187907 |w (DE-600)1465290-0 |w (DE-576)9265187905 |x 1386-7857 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2018 |g number:4 |g day:25 |g month:08 |g pages:2013-2029 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10586-018-2841-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 54.50$jProgrammierung: Allgemeines |q VZ |0 181569876 |0 (DE-625)181569876 |
936 | b | k | |a 54.32$jRechnerkommunikation |q VZ |0 10640623X |0 (DE-625)10640623X |
936 | b | k | |a 54.25$jParallele Datenverarbeitung |q VZ |0 181569892 |0 (DE-625)181569892 |
951 | |a AR | ||
952 | |d 21 |j 2018 |e 4 |b 25 |c 08 |h 2013-2029 |
author_variant |
c l cl j t jt y l yl |
---|---|
matchkey_str |
article:13867857:2018----::oadoeainlotiiiainocodusigihedie |
hierarchy_sort_str |
2018 |
bklnumber |
54.50$jProgrammierung: Allgemeines 54.32$jRechnerkommunikation 54.25$jParallele Datenverarbeitung |
publishDate |
2018 |
allfields |
10.1007/s10586-018-2841-4 doi (DE-627)OLC2066391026 (DE-He213)s10586-018-2841-4-p DE-627 ger DE-627 rakwb eng 004 VZ 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung bkl Li, Chunlin verfasserin aut Towards operational cost minimization for cloud bursting with deadline constraints in hybrid clouds 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In hybrid clouds, there is a technique named cloud bursting which can allow companies to expand their capacity to meet the demands of peak workloads in a low-priced manner. In this work, a cost-aware job scheduling approach based on queueing theory in hybrid clouds is proposed. The job scheduling problem in the private cloud is modeled as a queueing model. A genetic algorithm is applied to achieve optimal queues for jobs to improve the utilization rate of the private cloud. Then, the task execution time is predicted by back propagation neural network. The max–min strategy is applied to schedule tasks according to the prediction results in hybrid clouds. Experiments show that our cost-aware job scheduling algorithm can reduce the average job waiting time and average job response time in the private cloud. In additional, our proposed job scheduling algorithm can improve the system throughput of the private cloud. It also can reduce the average task waiting time, average task response time and total costs in hybrid clouds. Hybrid clouds Cloud bursting Load balancing Genetic algorithm BP neural network Tang, Jianhang aut Luo, Youlong aut Enthalten in Cluster computing Springer US, 1998 21(2018), 4 vom: 25. Aug., Seite 2013-2029 (DE-627)265187907 (DE-600)1465290-0 (DE-576)9265187905 1386-7857 nnns volume:21 year:2018 number:4 day:25 month:08 pages:2013-2029 https://doi.org/10.1007/s10586-018-2841-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.50$jProgrammierung: Allgemeines VZ 181569876 (DE-625)181569876 54.32$jRechnerkommunikation VZ 10640623X (DE-625)10640623X 54.25$jParallele Datenverarbeitung VZ 181569892 (DE-625)181569892 AR 21 2018 4 25 08 2013-2029 |
spelling |
10.1007/s10586-018-2841-4 doi (DE-627)OLC2066391026 (DE-He213)s10586-018-2841-4-p DE-627 ger DE-627 rakwb eng 004 VZ 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung bkl Li, Chunlin verfasserin aut Towards operational cost minimization for cloud bursting with deadline constraints in hybrid clouds 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In hybrid clouds, there is a technique named cloud bursting which can allow companies to expand their capacity to meet the demands of peak workloads in a low-priced manner. In this work, a cost-aware job scheduling approach based on queueing theory in hybrid clouds is proposed. The job scheduling problem in the private cloud is modeled as a queueing model. A genetic algorithm is applied to achieve optimal queues for jobs to improve the utilization rate of the private cloud. Then, the task execution time is predicted by back propagation neural network. The max–min strategy is applied to schedule tasks according to the prediction results in hybrid clouds. Experiments show that our cost-aware job scheduling algorithm can reduce the average job waiting time and average job response time in the private cloud. In additional, our proposed job scheduling algorithm can improve the system throughput of the private cloud. It also can reduce the average task waiting time, average task response time and total costs in hybrid clouds. Hybrid clouds Cloud bursting Load balancing Genetic algorithm BP neural network Tang, Jianhang aut Luo, Youlong aut Enthalten in Cluster computing Springer US, 1998 21(2018), 4 vom: 25. Aug., Seite 2013-2029 (DE-627)265187907 (DE-600)1465290-0 (DE-576)9265187905 1386-7857 nnns volume:21 year:2018 number:4 day:25 month:08 pages:2013-2029 https://doi.org/10.1007/s10586-018-2841-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.50$jProgrammierung: Allgemeines VZ 181569876 (DE-625)181569876 54.32$jRechnerkommunikation VZ 10640623X (DE-625)10640623X 54.25$jParallele Datenverarbeitung VZ 181569892 (DE-625)181569892 AR 21 2018 4 25 08 2013-2029 |
allfields_unstemmed |
10.1007/s10586-018-2841-4 doi (DE-627)OLC2066391026 (DE-He213)s10586-018-2841-4-p DE-627 ger DE-627 rakwb eng 004 VZ 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung bkl Li, Chunlin verfasserin aut Towards operational cost minimization for cloud bursting with deadline constraints in hybrid clouds 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In hybrid clouds, there is a technique named cloud bursting which can allow companies to expand their capacity to meet the demands of peak workloads in a low-priced manner. In this work, a cost-aware job scheduling approach based on queueing theory in hybrid clouds is proposed. The job scheduling problem in the private cloud is modeled as a queueing model. A genetic algorithm is applied to achieve optimal queues for jobs to improve the utilization rate of the private cloud. Then, the task execution time is predicted by back propagation neural network. The max–min strategy is applied to schedule tasks according to the prediction results in hybrid clouds. Experiments show that our cost-aware job scheduling algorithm can reduce the average job waiting time and average job response time in the private cloud. In additional, our proposed job scheduling algorithm can improve the system throughput of the private cloud. It also can reduce the average task waiting time, average task response time and total costs in hybrid clouds. Hybrid clouds Cloud bursting Load balancing Genetic algorithm BP neural network Tang, Jianhang aut Luo, Youlong aut Enthalten in Cluster computing Springer US, 1998 21(2018), 4 vom: 25. Aug., Seite 2013-2029 (DE-627)265187907 (DE-600)1465290-0 (DE-576)9265187905 1386-7857 nnns volume:21 year:2018 number:4 day:25 month:08 pages:2013-2029 https://doi.org/10.1007/s10586-018-2841-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.50$jProgrammierung: Allgemeines VZ 181569876 (DE-625)181569876 54.32$jRechnerkommunikation VZ 10640623X (DE-625)10640623X 54.25$jParallele Datenverarbeitung VZ 181569892 (DE-625)181569892 AR 21 2018 4 25 08 2013-2029 |
allfieldsGer |
10.1007/s10586-018-2841-4 doi (DE-627)OLC2066391026 (DE-He213)s10586-018-2841-4-p DE-627 ger DE-627 rakwb eng 004 VZ 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung bkl Li, Chunlin verfasserin aut Towards operational cost minimization for cloud bursting with deadline constraints in hybrid clouds 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In hybrid clouds, there is a technique named cloud bursting which can allow companies to expand their capacity to meet the demands of peak workloads in a low-priced manner. In this work, a cost-aware job scheduling approach based on queueing theory in hybrid clouds is proposed. The job scheduling problem in the private cloud is modeled as a queueing model. A genetic algorithm is applied to achieve optimal queues for jobs to improve the utilization rate of the private cloud. Then, the task execution time is predicted by back propagation neural network. The max–min strategy is applied to schedule tasks according to the prediction results in hybrid clouds. Experiments show that our cost-aware job scheduling algorithm can reduce the average job waiting time and average job response time in the private cloud. In additional, our proposed job scheduling algorithm can improve the system throughput of the private cloud. It also can reduce the average task waiting time, average task response time and total costs in hybrid clouds. Hybrid clouds Cloud bursting Load balancing Genetic algorithm BP neural network Tang, Jianhang aut Luo, Youlong aut Enthalten in Cluster computing Springer US, 1998 21(2018), 4 vom: 25. Aug., Seite 2013-2029 (DE-627)265187907 (DE-600)1465290-0 (DE-576)9265187905 1386-7857 nnns volume:21 year:2018 number:4 day:25 month:08 pages:2013-2029 https://doi.org/10.1007/s10586-018-2841-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.50$jProgrammierung: Allgemeines VZ 181569876 (DE-625)181569876 54.32$jRechnerkommunikation VZ 10640623X (DE-625)10640623X 54.25$jParallele Datenverarbeitung VZ 181569892 (DE-625)181569892 AR 21 2018 4 25 08 2013-2029 |
allfieldsSound |
10.1007/s10586-018-2841-4 doi (DE-627)OLC2066391026 (DE-He213)s10586-018-2841-4-p DE-627 ger DE-627 rakwb eng 004 VZ 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung bkl Li, Chunlin verfasserin aut Towards operational cost minimization for cloud bursting with deadline constraints in hybrid clouds 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In hybrid clouds, there is a technique named cloud bursting which can allow companies to expand their capacity to meet the demands of peak workloads in a low-priced manner. In this work, a cost-aware job scheduling approach based on queueing theory in hybrid clouds is proposed. The job scheduling problem in the private cloud is modeled as a queueing model. A genetic algorithm is applied to achieve optimal queues for jobs to improve the utilization rate of the private cloud. Then, the task execution time is predicted by back propagation neural network. The max–min strategy is applied to schedule tasks according to the prediction results in hybrid clouds. Experiments show that our cost-aware job scheduling algorithm can reduce the average job waiting time and average job response time in the private cloud. In additional, our proposed job scheduling algorithm can improve the system throughput of the private cloud. It also can reduce the average task waiting time, average task response time and total costs in hybrid clouds. Hybrid clouds Cloud bursting Load balancing Genetic algorithm BP neural network Tang, Jianhang aut Luo, Youlong aut Enthalten in Cluster computing Springer US, 1998 21(2018), 4 vom: 25. Aug., Seite 2013-2029 (DE-627)265187907 (DE-600)1465290-0 (DE-576)9265187905 1386-7857 nnns volume:21 year:2018 number:4 day:25 month:08 pages:2013-2029 https://doi.org/10.1007/s10586-018-2841-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.50$jProgrammierung: Allgemeines VZ 181569876 (DE-625)181569876 54.32$jRechnerkommunikation VZ 10640623X (DE-625)10640623X 54.25$jParallele Datenverarbeitung VZ 181569892 (DE-625)181569892 AR 21 2018 4 25 08 2013-2029 |
language |
English |
source |
Enthalten in Cluster computing 21(2018), 4 vom: 25. Aug., Seite 2013-2029 volume:21 year:2018 number:4 day:25 month:08 pages:2013-2029 |
sourceStr |
Enthalten in Cluster computing 21(2018), 4 vom: 25. Aug., Seite 2013-2029 volume:21 year:2018 number:4 day:25 month:08 pages:2013-2029 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hybrid clouds Cloud bursting Load balancing Genetic algorithm BP neural network |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Cluster computing |
authorswithroles_txt_mv |
Li, Chunlin @@aut@@ Tang, Jianhang @@aut@@ Luo, Youlong @@aut@@ |
publishDateDaySort_date |
2018-08-25T00:00:00Z |
hierarchy_top_id |
265187907 |
dewey-sort |
14 |
id |
OLC2066391026 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2066391026</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503024842.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10586-018-2841-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2066391026</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10586-018-2841-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.50$jProgrammierung: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.32$jRechnerkommunikation</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.25$jParallele Datenverarbeitung</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Chunlin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards operational cost minimization for cloud bursting with deadline constraints in hybrid clouds</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In hybrid clouds, there is a technique named cloud bursting which can allow companies to expand their capacity to meet the demands of peak workloads in a low-priced manner. In this work, a cost-aware job scheduling approach based on queueing theory in hybrid clouds is proposed. The job scheduling problem in the private cloud is modeled as a queueing model. A genetic algorithm is applied to achieve optimal queues for jobs to improve the utilization rate of the private cloud. Then, the task execution time is predicted by back propagation neural network. The max–min strategy is applied to schedule tasks according to the prediction results in hybrid clouds. Experiments show that our cost-aware job scheduling algorithm can reduce the average job waiting time and average job response time in the private cloud. In additional, our proposed job scheduling algorithm can improve the system throughput of the private cloud. It also can reduce the average task waiting time, average task response time and total costs in hybrid clouds.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid clouds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud bursting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load balancing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BP neural network</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Jianhang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Youlong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cluster computing</subfield><subfield code="d">Springer US, 1998</subfield><subfield code="g">21(2018), 4 vom: 25. Aug., Seite 2013-2029</subfield><subfield code="w">(DE-627)265187907</subfield><subfield code="w">(DE-600)1465290-0</subfield><subfield code="w">(DE-576)9265187905</subfield><subfield code="x">1386-7857</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4</subfield><subfield code="g">day:25</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:2013-2029</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10586-018-2841-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.50$jProgrammierung: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">181569876</subfield><subfield code="0">(DE-625)181569876</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.32$jRechnerkommunikation</subfield><subfield code="q">VZ</subfield><subfield code="0">10640623X</subfield><subfield code="0">(DE-625)10640623X</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.25$jParallele Datenverarbeitung</subfield><subfield code="q">VZ</subfield><subfield code="0">181569892</subfield><subfield code="0">(DE-625)181569892</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2018</subfield><subfield code="e">4</subfield><subfield code="b">25</subfield><subfield code="c">08</subfield><subfield code="h">2013-2029</subfield></datafield></record></collection>
|
author |
Li, Chunlin |
spellingShingle |
Li, Chunlin ddc 004 bkl 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung misc Hybrid clouds misc Cloud bursting misc Load balancing misc Genetic algorithm misc BP neural network Towards operational cost minimization for cloud bursting with deadline constraints in hybrid clouds |
authorStr |
Li, Chunlin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)265187907 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1386-7857 |
topic_title |
004 VZ 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung bkl Towards operational cost minimization for cloud bursting with deadline constraints in hybrid clouds Hybrid clouds Cloud bursting Load balancing Genetic algorithm BP neural network |
topic |
ddc 004 bkl 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung misc Hybrid clouds misc Cloud bursting misc Load balancing misc Genetic algorithm misc BP neural network |
topic_unstemmed |
ddc 004 bkl 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung misc Hybrid clouds misc Cloud bursting misc Load balancing misc Genetic algorithm misc BP neural network |
topic_browse |
ddc 004 bkl 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung misc Hybrid clouds misc Cloud bursting misc Load balancing misc Genetic algorithm misc BP neural network |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Cluster computing |
hierarchy_parent_id |
265187907 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Cluster computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)265187907 (DE-600)1465290-0 (DE-576)9265187905 |
title |
Towards operational cost minimization for cloud bursting with deadline constraints in hybrid clouds |
ctrlnum |
(DE-627)OLC2066391026 (DE-He213)s10586-018-2841-4-p |
title_full |
Towards operational cost minimization for cloud bursting with deadline constraints in hybrid clouds |
author_sort |
Li, Chunlin |
journal |
Cluster computing |
journalStr |
Cluster computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
2013 |
author_browse |
Li, Chunlin Tang, Jianhang Luo, Youlong |
container_volume |
21 |
class |
004 VZ 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung bkl |
format_se |
Aufsätze |
author-letter |
Li, Chunlin |
doi_str_mv |
10.1007/s10586-018-2841-4 |
normlink |
181569876 10640623X 181569892 |
normlink_prefix_str_mv |
181569876 (DE-625)181569876 10640623X (DE-625)10640623X 181569892 (DE-625)181569892 |
dewey-full |
004 |
title_sort |
towards operational cost minimization for cloud bursting with deadline constraints in hybrid clouds |
title_auth |
Towards operational cost minimization for cloud bursting with deadline constraints in hybrid clouds |
abstract |
Abstract In hybrid clouds, there is a technique named cloud bursting which can allow companies to expand their capacity to meet the demands of peak workloads in a low-priced manner. In this work, a cost-aware job scheduling approach based on queueing theory in hybrid clouds is proposed. The job scheduling problem in the private cloud is modeled as a queueing model. A genetic algorithm is applied to achieve optimal queues for jobs to improve the utilization rate of the private cloud. Then, the task execution time is predicted by back propagation neural network. The max–min strategy is applied to schedule tasks according to the prediction results in hybrid clouds. Experiments show that our cost-aware job scheduling algorithm can reduce the average job waiting time and average job response time in the private cloud. In additional, our proposed job scheduling algorithm can improve the system throughput of the private cloud. It also can reduce the average task waiting time, average task response time and total costs in hybrid clouds. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstractGer |
Abstract In hybrid clouds, there is a technique named cloud bursting which can allow companies to expand their capacity to meet the demands of peak workloads in a low-priced manner. In this work, a cost-aware job scheduling approach based on queueing theory in hybrid clouds is proposed. The job scheduling problem in the private cloud is modeled as a queueing model. A genetic algorithm is applied to achieve optimal queues for jobs to improve the utilization rate of the private cloud. Then, the task execution time is predicted by back propagation neural network. The max–min strategy is applied to schedule tasks according to the prediction results in hybrid clouds. Experiments show that our cost-aware job scheduling algorithm can reduce the average job waiting time and average job response time in the private cloud. In additional, our proposed job scheduling algorithm can improve the system throughput of the private cloud. It also can reduce the average task waiting time, average task response time and total costs in hybrid clouds. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract In hybrid clouds, there is a technique named cloud bursting which can allow companies to expand their capacity to meet the demands of peak workloads in a low-priced manner. In this work, a cost-aware job scheduling approach based on queueing theory in hybrid clouds is proposed. The job scheduling problem in the private cloud is modeled as a queueing model. A genetic algorithm is applied to achieve optimal queues for jobs to improve the utilization rate of the private cloud. Then, the task execution time is predicted by back propagation neural network. The max–min strategy is applied to schedule tasks according to the prediction results in hybrid clouds. Experiments show that our cost-aware job scheduling algorithm can reduce the average job waiting time and average job response time in the private cloud. In additional, our proposed job scheduling algorithm can improve the system throughput of the private cloud. It also can reduce the average task waiting time, average task response time and total costs in hybrid clouds. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 |
container_issue |
4 |
title_short |
Towards operational cost minimization for cloud bursting with deadline constraints in hybrid clouds |
url |
https://doi.org/10.1007/s10586-018-2841-4 |
remote_bool |
false |
author2 |
Tang, Jianhang Luo, Youlong |
author2Str |
Tang, Jianhang Luo, Youlong |
ppnlink |
265187907 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10586-018-2841-4 |
up_date |
2024-07-04T04:25:43.202Z |
_version_ |
1803621124749131776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2066391026</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503024842.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10586-018-2841-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2066391026</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10586-018-2841-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.50$jProgrammierung: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.32$jRechnerkommunikation</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.25$jParallele Datenverarbeitung</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Chunlin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards operational cost minimization for cloud bursting with deadline constraints in hybrid clouds</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In hybrid clouds, there is a technique named cloud bursting which can allow companies to expand their capacity to meet the demands of peak workloads in a low-priced manner. In this work, a cost-aware job scheduling approach based on queueing theory in hybrid clouds is proposed. The job scheduling problem in the private cloud is modeled as a queueing model. A genetic algorithm is applied to achieve optimal queues for jobs to improve the utilization rate of the private cloud. Then, the task execution time is predicted by back propagation neural network. The max–min strategy is applied to schedule tasks according to the prediction results in hybrid clouds. Experiments show that our cost-aware job scheduling algorithm can reduce the average job waiting time and average job response time in the private cloud. In additional, our proposed job scheduling algorithm can improve the system throughput of the private cloud. It also can reduce the average task waiting time, average task response time and total costs in hybrid clouds.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid clouds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud bursting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load balancing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BP neural network</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Jianhang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Youlong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cluster computing</subfield><subfield code="d">Springer US, 1998</subfield><subfield code="g">21(2018), 4 vom: 25. Aug., Seite 2013-2029</subfield><subfield code="w">(DE-627)265187907</subfield><subfield code="w">(DE-600)1465290-0</subfield><subfield code="w">(DE-576)9265187905</subfield><subfield code="x">1386-7857</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4</subfield><subfield code="g">day:25</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:2013-2029</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10586-018-2841-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.50$jProgrammierung: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">181569876</subfield><subfield code="0">(DE-625)181569876</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.32$jRechnerkommunikation</subfield><subfield code="q">VZ</subfield><subfield code="0">10640623X</subfield><subfield code="0">(DE-625)10640623X</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.25$jParallele Datenverarbeitung</subfield><subfield code="q">VZ</subfield><subfield code="0">181569892</subfield><subfield code="0">(DE-625)181569892</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2018</subfield><subfield code="e">4</subfield><subfield code="b">25</subfield><subfield code="c">08</subfield><subfield code="h">2013-2029</subfield></datafield></record></collection>
|
score |
7.400985 |