A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment
Abstract Cloud computing is one of the rapidly growing environment in recent days where it interconnects the entire world in human’s day to day life activities. Resource allocation, scheduling and load balancing are the three important things which improve the quality of service in cloud computing....
Ausführliche Beschreibung
Autor*in: |
Muthulakshmi, B. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Cluster computing - Springer US, 1998, 22(2017), Suppl 5 vom: 19. Sept., Seite 10769-10777 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2017 ; number:Suppl 5 ; day:19 ; month:09 ; pages:10769-10777 |
Links: |
---|
DOI / URN: |
10.1007/s10586-017-1174-z |
---|
Katalog-ID: |
OLC2066394351 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2066394351 | ||
003 | DE-627 | ||
005 | 20230503024958.0 | ||
007 | tu | ||
008 | 200819s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10586-017-1174-z |2 doi | |
035 | |a (DE-627)OLC2066394351 | ||
035 | |a (DE-He213)s10586-017-1174-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 54.50$jProgrammierung: Allgemeines |2 bkl | ||
084 | |a 54.32$jRechnerkommunikation |2 bkl | ||
084 | |a 54.25$jParallele Datenverarbeitung |2 bkl | ||
100 | 1 | |a Muthulakshmi, B. |e verfasserin |0 (orcid)0000-0002-5287-790X |4 aut | |
245 | 1 | 0 | |a A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2017 | ||
520 | |a Abstract Cloud computing is one of the rapidly growing environment in recent days where it interconnects the entire world in human’s day to day life activities. Resource allocation, scheduling and load balancing are the three important things which improve the quality of service in cloud computing. To do this and choose an optimum resource, optimum schedule and through this balancing the load can be obtained using ABC-SA method. The main contribution of this paper is to implement a hybrid optimization algorithm by integrating the functionality of simulated annealing (SA) into artificial bee colony (ABC) algorithm to do the efficient scheduling according to the task size, priority of the request and closest distance between client nodes to a server in the cloud environment. This ABC-SA based optimized scheduling approach has the capability of improving the efficiency in terms of searching optimum resource time where the dynamic and random searching behavior is obtained from SA. ABC-SA is implemented and experimented in the CloudSim tool and the results are verified. The performance of the proposed approach is evaluated by comparing the results with the existing system results. | ||
650 | 4 | |a Cloud computing | |
650 | 4 | |a Scheduling | |
650 | 4 | |a Load balancing | |
650 | 4 | |a Virtualization | |
650 | 4 | |a Client–server communication | |
700 | 1 | |a Somasundaram, K. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Cluster computing |d Springer US, 1998 |g 22(2017), Suppl 5 vom: 19. Sept., Seite 10769-10777 |w (DE-627)265187907 |w (DE-600)1465290-0 |w (DE-576)9265187905 |x 1386-7857 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2017 |g number:Suppl 5 |g day:19 |g month:09 |g pages:10769-10777 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10586-017-1174-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 54.50$jProgrammierung: Allgemeines |q VZ |0 181569876 |0 (DE-625)181569876 |
936 | b | k | |a 54.32$jRechnerkommunikation |q VZ |0 10640623X |0 (DE-625)10640623X |
936 | b | k | |a 54.25$jParallele Datenverarbeitung |q VZ |0 181569892 |0 (DE-625)181569892 |
951 | |a AR | ||
952 | |d 22 |j 2017 |e Suppl 5 |b 19 |c 09 |h 10769-10777 |
author_variant |
b m bm k s ks |
---|---|
matchkey_str |
article:13867857:2017----::hbiacaaeotmzdceuignrsucalcto |
hierarchy_sort_str |
2017 |
bklnumber |
54.50$jProgrammierung: Allgemeines 54.32$jRechnerkommunikation 54.25$jParallele Datenverarbeitung |
publishDate |
2017 |
allfields |
10.1007/s10586-017-1174-z doi (DE-627)OLC2066394351 (DE-He213)s10586-017-1174-z-p DE-627 ger DE-627 rakwb eng 004 VZ 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung bkl Muthulakshmi, B. verfasserin (orcid)0000-0002-5287-790X aut A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2017 Abstract Cloud computing is one of the rapidly growing environment in recent days where it interconnects the entire world in human’s day to day life activities. Resource allocation, scheduling and load balancing are the three important things which improve the quality of service in cloud computing. To do this and choose an optimum resource, optimum schedule and through this balancing the load can be obtained using ABC-SA method. The main contribution of this paper is to implement a hybrid optimization algorithm by integrating the functionality of simulated annealing (SA) into artificial bee colony (ABC) algorithm to do the efficient scheduling according to the task size, priority of the request and closest distance between client nodes to a server in the cloud environment. This ABC-SA based optimized scheduling approach has the capability of improving the efficiency in terms of searching optimum resource time where the dynamic and random searching behavior is obtained from SA. ABC-SA is implemented and experimented in the CloudSim tool and the results are verified. The performance of the proposed approach is evaluated by comparing the results with the existing system results. Cloud computing Scheduling Load balancing Virtualization Client–server communication Somasundaram, K. aut Enthalten in Cluster computing Springer US, 1998 22(2017), Suppl 5 vom: 19. Sept., Seite 10769-10777 (DE-627)265187907 (DE-600)1465290-0 (DE-576)9265187905 1386-7857 nnns volume:22 year:2017 number:Suppl 5 day:19 month:09 pages:10769-10777 https://doi.org/10.1007/s10586-017-1174-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.50$jProgrammierung: Allgemeines VZ 181569876 (DE-625)181569876 54.32$jRechnerkommunikation VZ 10640623X (DE-625)10640623X 54.25$jParallele Datenverarbeitung VZ 181569892 (DE-625)181569892 AR 22 2017 Suppl 5 19 09 10769-10777 |
spelling |
10.1007/s10586-017-1174-z doi (DE-627)OLC2066394351 (DE-He213)s10586-017-1174-z-p DE-627 ger DE-627 rakwb eng 004 VZ 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung bkl Muthulakshmi, B. verfasserin (orcid)0000-0002-5287-790X aut A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2017 Abstract Cloud computing is one of the rapidly growing environment in recent days where it interconnects the entire world in human’s day to day life activities. Resource allocation, scheduling and load balancing are the three important things which improve the quality of service in cloud computing. To do this and choose an optimum resource, optimum schedule and through this balancing the load can be obtained using ABC-SA method. The main contribution of this paper is to implement a hybrid optimization algorithm by integrating the functionality of simulated annealing (SA) into artificial bee colony (ABC) algorithm to do the efficient scheduling according to the task size, priority of the request and closest distance between client nodes to a server in the cloud environment. This ABC-SA based optimized scheduling approach has the capability of improving the efficiency in terms of searching optimum resource time where the dynamic and random searching behavior is obtained from SA. ABC-SA is implemented and experimented in the CloudSim tool and the results are verified. The performance of the proposed approach is evaluated by comparing the results with the existing system results. Cloud computing Scheduling Load balancing Virtualization Client–server communication Somasundaram, K. aut Enthalten in Cluster computing Springer US, 1998 22(2017), Suppl 5 vom: 19. Sept., Seite 10769-10777 (DE-627)265187907 (DE-600)1465290-0 (DE-576)9265187905 1386-7857 nnns volume:22 year:2017 number:Suppl 5 day:19 month:09 pages:10769-10777 https://doi.org/10.1007/s10586-017-1174-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.50$jProgrammierung: Allgemeines VZ 181569876 (DE-625)181569876 54.32$jRechnerkommunikation VZ 10640623X (DE-625)10640623X 54.25$jParallele Datenverarbeitung VZ 181569892 (DE-625)181569892 AR 22 2017 Suppl 5 19 09 10769-10777 |
allfields_unstemmed |
10.1007/s10586-017-1174-z doi (DE-627)OLC2066394351 (DE-He213)s10586-017-1174-z-p DE-627 ger DE-627 rakwb eng 004 VZ 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung bkl Muthulakshmi, B. verfasserin (orcid)0000-0002-5287-790X aut A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2017 Abstract Cloud computing is one of the rapidly growing environment in recent days where it interconnects the entire world in human’s day to day life activities. Resource allocation, scheduling and load balancing are the three important things which improve the quality of service in cloud computing. To do this and choose an optimum resource, optimum schedule and through this balancing the load can be obtained using ABC-SA method. The main contribution of this paper is to implement a hybrid optimization algorithm by integrating the functionality of simulated annealing (SA) into artificial bee colony (ABC) algorithm to do the efficient scheduling according to the task size, priority of the request and closest distance between client nodes to a server in the cloud environment. This ABC-SA based optimized scheduling approach has the capability of improving the efficiency in terms of searching optimum resource time where the dynamic and random searching behavior is obtained from SA. ABC-SA is implemented and experimented in the CloudSim tool and the results are verified. The performance of the proposed approach is evaluated by comparing the results with the existing system results. Cloud computing Scheduling Load balancing Virtualization Client–server communication Somasundaram, K. aut Enthalten in Cluster computing Springer US, 1998 22(2017), Suppl 5 vom: 19. Sept., Seite 10769-10777 (DE-627)265187907 (DE-600)1465290-0 (DE-576)9265187905 1386-7857 nnns volume:22 year:2017 number:Suppl 5 day:19 month:09 pages:10769-10777 https://doi.org/10.1007/s10586-017-1174-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.50$jProgrammierung: Allgemeines VZ 181569876 (DE-625)181569876 54.32$jRechnerkommunikation VZ 10640623X (DE-625)10640623X 54.25$jParallele Datenverarbeitung VZ 181569892 (DE-625)181569892 AR 22 2017 Suppl 5 19 09 10769-10777 |
allfieldsGer |
10.1007/s10586-017-1174-z doi (DE-627)OLC2066394351 (DE-He213)s10586-017-1174-z-p DE-627 ger DE-627 rakwb eng 004 VZ 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung bkl Muthulakshmi, B. verfasserin (orcid)0000-0002-5287-790X aut A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2017 Abstract Cloud computing is one of the rapidly growing environment in recent days where it interconnects the entire world in human’s day to day life activities. Resource allocation, scheduling and load balancing are the three important things which improve the quality of service in cloud computing. To do this and choose an optimum resource, optimum schedule and through this balancing the load can be obtained using ABC-SA method. The main contribution of this paper is to implement a hybrid optimization algorithm by integrating the functionality of simulated annealing (SA) into artificial bee colony (ABC) algorithm to do the efficient scheduling according to the task size, priority of the request and closest distance between client nodes to a server in the cloud environment. This ABC-SA based optimized scheduling approach has the capability of improving the efficiency in terms of searching optimum resource time where the dynamic and random searching behavior is obtained from SA. ABC-SA is implemented and experimented in the CloudSim tool and the results are verified. The performance of the proposed approach is evaluated by comparing the results with the existing system results. Cloud computing Scheduling Load balancing Virtualization Client–server communication Somasundaram, K. aut Enthalten in Cluster computing Springer US, 1998 22(2017), Suppl 5 vom: 19. Sept., Seite 10769-10777 (DE-627)265187907 (DE-600)1465290-0 (DE-576)9265187905 1386-7857 nnns volume:22 year:2017 number:Suppl 5 day:19 month:09 pages:10769-10777 https://doi.org/10.1007/s10586-017-1174-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.50$jProgrammierung: Allgemeines VZ 181569876 (DE-625)181569876 54.32$jRechnerkommunikation VZ 10640623X (DE-625)10640623X 54.25$jParallele Datenverarbeitung VZ 181569892 (DE-625)181569892 AR 22 2017 Suppl 5 19 09 10769-10777 |
allfieldsSound |
10.1007/s10586-017-1174-z doi (DE-627)OLC2066394351 (DE-He213)s10586-017-1174-z-p DE-627 ger DE-627 rakwb eng 004 VZ 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung bkl Muthulakshmi, B. verfasserin (orcid)0000-0002-5287-790X aut A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2017 Abstract Cloud computing is one of the rapidly growing environment in recent days where it interconnects the entire world in human’s day to day life activities. Resource allocation, scheduling and load balancing are the three important things which improve the quality of service in cloud computing. To do this and choose an optimum resource, optimum schedule and through this balancing the load can be obtained using ABC-SA method. The main contribution of this paper is to implement a hybrid optimization algorithm by integrating the functionality of simulated annealing (SA) into artificial bee colony (ABC) algorithm to do the efficient scheduling according to the task size, priority of the request and closest distance between client nodes to a server in the cloud environment. This ABC-SA based optimized scheduling approach has the capability of improving the efficiency in terms of searching optimum resource time where the dynamic and random searching behavior is obtained from SA. ABC-SA is implemented and experimented in the CloudSim tool and the results are verified. The performance of the proposed approach is evaluated by comparing the results with the existing system results. Cloud computing Scheduling Load balancing Virtualization Client–server communication Somasundaram, K. aut Enthalten in Cluster computing Springer US, 1998 22(2017), Suppl 5 vom: 19. Sept., Seite 10769-10777 (DE-627)265187907 (DE-600)1465290-0 (DE-576)9265187905 1386-7857 nnns volume:22 year:2017 number:Suppl 5 day:19 month:09 pages:10769-10777 https://doi.org/10.1007/s10586-017-1174-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.50$jProgrammierung: Allgemeines VZ 181569876 (DE-625)181569876 54.32$jRechnerkommunikation VZ 10640623X (DE-625)10640623X 54.25$jParallele Datenverarbeitung VZ 181569892 (DE-625)181569892 AR 22 2017 Suppl 5 19 09 10769-10777 |
language |
English |
source |
Enthalten in Cluster computing 22(2017), Suppl 5 vom: 19. Sept., Seite 10769-10777 volume:22 year:2017 number:Suppl 5 day:19 month:09 pages:10769-10777 |
sourceStr |
Enthalten in Cluster computing 22(2017), Suppl 5 vom: 19. Sept., Seite 10769-10777 volume:22 year:2017 number:Suppl 5 day:19 month:09 pages:10769-10777 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cloud computing Scheduling Load balancing Virtualization Client–server communication |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Cluster computing |
authorswithroles_txt_mv |
Muthulakshmi, B. @@aut@@ Somasundaram, K. @@aut@@ |
publishDateDaySort_date |
2017-09-19T00:00:00Z |
hierarchy_top_id |
265187907 |
dewey-sort |
14 |
id |
OLC2066394351 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2066394351</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503024958.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10586-017-1174-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2066394351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10586-017-1174-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.50$jProgrammierung: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.32$jRechnerkommunikation</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.25$jParallele Datenverarbeitung</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Muthulakshmi, B.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5287-790X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Cloud computing is one of the rapidly growing environment in recent days where it interconnects the entire world in human’s day to day life activities. Resource allocation, scheduling and load balancing are the three important things which improve the quality of service in cloud computing. To do this and choose an optimum resource, optimum schedule and through this balancing the load can be obtained using ABC-SA method. The main contribution of this paper is to implement a hybrid optimization algorithm by integrating the functionality of simulated annealing (SA) into artificial bee colony (ABC) algorithm to do the efficient scheduling according to the task size, priority of the request and closest distance between client nodes to a server in the cloud environment. This ABC-SA based optimized scheduling approach has the capability of improving the efficiency in terms of searching optimum resource time where the dynamic and random searching behavior is obtained from SA. ABC-SA is implemented and experimented in the CloudSim tool and the results are verified. The performance of the proposed approach is evaluated by comparing the results with the existing system results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load balancing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Virtualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Client–server communication</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Somasundaram, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cluster computing</subfield><subfield code="d">Springer US, 1998</subfield><subfield code="g">22(2017), Suppl 5 vom: 19. Sept., Seite 10769-10777</subfield><subfield code="w">(DE-627)265187907</subfield><subfield code="w">(DE-600)1465290-0</subfield><subfield code="w">(DE-576)9265187905</subfield><subfield code="x">1386-7857</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:Suppl 5</subfield><subfield code="g">day:19</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:10769-10777</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10586-017-1174-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.50$jProgrammierung: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">181569876</subfield><subfield code="0">(DE-625)181569876</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.32$jRechnerkommunikation</subfield><subfield code="q">VZ</subfield><subfield code="0">10640623X</subfield><subfield code="0">(DE-625)10640623X</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.25$jParallele Datenverarbeitung</subfield><subfield code="q">VZ</subfield><subfield code="0">181569892</subfield><subfield code="0">(DE-625)181569892</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2017</subfield><subfield code="e">Suppl 5</subfield><subfield code="b">19</subfield><subfield code="c">09</subfield><subfield code="h">10769-10777</subfield></datafield></record></collection>
|
author |
Muthulakshmi, B. |
spellingShingle |
Muthulakshmi, B. ddc 004 bkl 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung misc Cloud computing misc Scheduling misc Load balancing misc Virtualization misc Client–server communication A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment |
authorStr |
Muthulakshmi, B. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)265187907 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1386-7857 |
topic_title |
004 VZ 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung bkl A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment Cloud computing Scheduling Load balancing Virtualization Client–server communication |
topic |
ddc 004 bkl 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung misc Cloud computing misc Scheduling misc Load balancing misc Virtualization misc Client–server communication |
topic_unstemmed |
ddc 004 bkl 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung misc Cloud computing misc Scheduling misc Load balancing misc Virtualization misc Client–server communication |
topic_browse |
ddc 004 bkl 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung misc Cloud computing misc Scheduling misc Load balancing misc Virtualization misc Client–server communication |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Cluster computing |
hierarchy_parent_id |
265187907 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Cluster computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)265187907 (DE-600)1465290-0 (DE-576)9265187905 |
title |
A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment |
ctrlnum |
(DE-627)OLC2066394351 (DE-He213)s10586-017-1174-z-p |
title_full |
A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment |
author_sort |
Muthulakshmi, B. |
journal |
Cluster computing |
journalStr |
Cluster computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
10769 |
author_browse |
Muthulakshmi, B. Somasundaram, K. |
container_volume |
22 |
class |
004 VZ 54.50$jProgrammierung: Allgemeines bkl 54.32$jRechnerkommunikation bkl 54.25$jParallele Datenverarbeitung bkl |
format_se |
Aufsätze |
author-letter |
Muthulakshmi, B. |
doi_str_mv |
10.1007/s10586-017-1174-z |
normlink |
(ORCID)0000-0002-5287-790X 181569876 10640623X 181569892 |
normlink_prefix_str_mv |
(orcid)0000-0002-5287-790X 181569876 (DE-625)181569876 10640623X (DE-625)10640623X 181569892 (DE-625)181569892 |
dewey-full |
004 |
title_sort |
a hybrid abc-sa based optimized scheduling and resource allocation for cloud environment |
title_auth |
A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment |
abstract |
Abstract Cloud computing is one of the rapidly growing environment in recent days where it interconnects the entire world in human’s day to day life activities. Resource allocation, scheduling and load balancing are the three important things which improve the quality of service in cloud computing. To do this and choose an optimum resource, optimum schedule and through this balancing the load can be obtained using ABC-SA method. The main contribution of this paper is to implement a hybrid optimization algorithm by integrating the functionality of simulated annealing (SA) into artificial bee colony (ABC) algorithm to do the efficient scheduling according to the task size, priority of the request and closest distance between client nodes to a server in the cloud environment. This ABC-SA based optimized scheduling approach has the capability of improving the efficiency in terms of searching optimum resource time where the dynamic and random searching behavior is obtained from SA. ABC-SA is implemented and experimented in the CloudSim tool and the results are verified. The performance of the proposed approach is evaluated by comparing the results with the existing system results. © Springer Science+Business Media, LLC 2017 |
abstractGer |
Abstract Cloud computing is one of the rapidly growing environment in recent days where it interconnects the entire world in human’s day to day life activities. Resource allocation, scheduling and load balancing are the three important things which improve the quality of service in cloud computing. To do this and choose an optimum resource, optimum schedule and through this balancing the load can be obtained using ABC-SA method. The main contribution of this paper is to implement a hybrid optimization algorithm by integrating the functionality of simulated annealing (SA) into artificial bee colony (ABC) algorithm to do the efficient scheduling according to the task size, priority of the request and closest distance between client nodes to a server in the cloud environment. This ABC-SA based optimized scheduling approach has the capability of improving the efficiency in terms of searching optimum resource time where the dynamic and random searching behavior is obtained from SA. ABC-SA is implemented and experimented in the CloudSim tool and the results are verified. The performance of the proposed approach is evaluated by comparing the results with the existing system results. © Springer Science+Business Media, LLC 2017 |
abstract_unstemmed |
Abstract Cloud computing is one of the rapidly growing environment in recent days where it interconnects the entire world in human’s day to day life activities. Resource allocation, scheduling and load balancing are the three important things which improve the quality of service in cloud computing. To do this and choose an optimum resource, optimum schedule and through this balancing the load can be obtained using ABC-SA method. The main contribution of this paper is to implement a hybrid optimization algorithm by integrating the functionality of simulated annealing (SA) into artificial bee colony (ABC) algorithm to do the efficient scheduling according to the task size, priority of the request and closest distance between client nodes to a server in the cloud environment. This ABC-SA based optimized scheduling approach has the capability of improving the efficiency in terms of searching optimum resource time where the dynamic and random searching behavior is obtained from SA. ABC-SA is implemented and experimented in the CloudSim tool and the results are verified. The performance of the proposed approach is evaluated by comparing the results with the existing system results. © Springer Science+Business Media, LLC 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 |
container_issue |
Suppl 5 |
title_short |
A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment |
url |
https://doi.org/10.1007/s10586-017-1174-z |
remote_bool |
false |
author2 |
Somasundaram, K. |
author2Str |
Somasundaram, K. |
ppnlink |
265187907 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10586-017-1174-z |
up_date |
2024-07-04T04:26:15.639Z |
_version_ |
1803621158770180096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2066394351</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503024958.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10586-017-1174-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2066394351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10586-017-1174-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.50$jProgrammierung: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.32$jRechnerkommunikation</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.25$jParallele Datenverarbeitung</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Muthulakshmi, B.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5287-790X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Cloud computing is one of the rapidly growing environment in recent days where it interconnects the entire world in human’s day to day life activities. Resource allocation, scheduling and load balancing are the three important things which improve the quality of service in cloud computing. To do this and choose an optimum resource, optimum schedule and through this balancing the load can be obtained using ABC-SA method. The main contribution of this paper is to implement a hybrid optimization algorithm by integrating the functionality of simulated annealing (SA) into artificial bee colony (ABC) algorithm to do the efficient scheduling according to the task size, priority of the request and closest distance between client nodes to a server in the cloud environment. This ABC-SA based optimized scheduling approach has the capability of improving the efficiency in terms of searching optimum resource time where the dynamic and random searching behavior is obtained from SA. ABC-SA is implemented and experimented in the CloudSim tool and the results are verified. The performance of the proposed approach is evaluated by comparing the results with the existing system results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load balancing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Virtualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Client–server communication</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Somasundaram, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cluster computing</subfield><subfield code="d">Springer US, 1998</subfield><subfield code="g">22(2017), Suppl 5 vom: 19. Sept., Seite 10769-10777</subfield><subfield code="w">(DE-627)265187907</subfield><subfield code="w">(DE-600)1465290-0</subfield><subfield code="w">(DE-576)9265187905</subfield><subfield code="x">1386-7857</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:Suppl 5</subfield><subfield code="g">day:19</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:10769-10777</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10586-017-1174-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.50$jProgrammierung: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">181569876</subfield><subfield code="0">(DE-625)181569876</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.32$jRechnerkommunikation</subfield><subfield code="q">VZ</subfield><subfield code="0">10640623X</subfield><subfield code="0">(DE-625)10640623X</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.25$jParallele Datenverarbeitung</subfield><subfield code="q">VZ</subfield><subfield code="0">181569892</subfield><subfield code="0">(DE-625)181569892</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2017</subfield><subfield code="e">Suppl 5</subfield><subfield code="b">19</subfield><subfield code="c">09</subfield><subfield code="h">10769-10777</subfield></datafield></record></collection>
|
score |
7.40166 |