Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit
Abstract This paper explores sparse time-frequency distribution (TFD) using overcomplete discrete wavelet transform (DWT) and sparse representation techniques. This distribution is discovered for characterizing the periodic transient information embedded in rolling element bearings and extracting ef...
Ausführliche Beschreibung
Autor*in: |
Wang, Cong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of intelligent manufacturing - Springer US, 1990, 28(2015), 6 vom: 17. Feb., Seite 1377-1391 |
---|---|
Übergeordnetes Werk: |
volume:28 ; year:2015 ; number:6 ; day:17 ; month:02 ; pages:1377-1391 |
Links: |
---|
DOI / URN: |
10.1007/s10845-015-1056-2 |
---|
Katalog-ID: |
OLC2066776033 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2066776033 | ||
003 | DE-627 | ||
005 | 20230503115649.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10845-015-1056-2 |2 doi | |
035 | |a (DE-627)OLC2066776033 | ||
035 | |a (DE-He213)s10845-015-1056-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 004 |q VZ |
100 | 1 | |a Wang, Cong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2015 | ||
520 | |a Abstract This paper explores sparse time-frequency distribution (TFD) using overcomplete discrete wavelet transform (DWT) and sparse representation techniques. This distribution is discovered for characterizing the periodic transient information embedded in rolling element bearings and extracting effective features that can discriminate different fault conditions. Based on the sparse TFD, a new sparse wavelet energy (SWE) feature is obtained by three main steps: first, an overcomplete discrete DWT is employed to decompose the fault signal and construct a redundant dictionary; second, the redundant dictionary is optimized by basis pursuit to obtain the sparsest TFD; finally, SWE is calculated from the new TFD to produce a feature vector for each signal. SWE features that combine the merits of overcomplete DWT and sparse representation techniques can precisely reveal fault-induced information, thereby exhibiting valuable properties for automatic fault identification by intelligent classifiers. The effectiveness and advantages of the proposed features are confirmed by simulation and the practical fault pattern recognition of rolling bearings. | ||
650 | 4 | |a Overcomplete discrete wavelet transform (DWT) | |
650 | 4 | |a Basis pursuit | |
650 | 4 | |a Sparse wavelet energy (SWE) | |
650 | 4 | |a Intelligent fault diagnosis | |
700 | 1 | |a Gan, Meng |4 aut | |
700 | 1 | |a Zhu, Chang’an |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of intelligent manufacturing |d Springer US, 1990 |g 28(2015), 6 vom: 17. Feb., Seite 1377-1391 |w (DE-627)130892815 |w (DE-600)1041378-9 |w (DE-576)026321106 |x 0956-5515 |7 nnns |
773 | 1 | 8 | |g volume:28 |g year:2015 |g number:6 |g day:17 |g month:02 |g pages:1377-1391 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10845-015-1056-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 28 |j 2015 |e 6 |b 17 |c 02 |h 1377-1391 |
author_variant |
c w cw m g mg c z cz |
---|---|
matchkey_str |
article:09565515:2015----::nelgnfutigoiorliglmnbaiguigpreaeeeegbsdn |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s10845-015-1056-2 doi (DE-627)OLC2066776033 (DE-He213)s10845-015-1056-2-p DE-627 ger DE-627 rakwb eng 620 004 VZ Wang, Cong verfasserin aut Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract This paper explores sparse time-frequency distribution (TFD) using overcomplete discrete wavelet transform (DWT) and sparse representation techniques. This distribution is discovered for characterizing the periodic transient information embedded in rolling element bearings and extracting effective features that can discriminate different fault conditions. Based on the sparse TFD, a new sparse wavelet energy (SWE) feature is obtained by three main steps: first, an overcomplete discrete DWT is employed to decompose the fault signal and construct a redundant dictionary; second, the redundant dictionary is optimized by basis pursuit to obtain the sparsest TFD; finally, SWE is calculated from the new TFD to produce a feature vector for each signal. SWE features that combine the merits of overcomplete DWT and sparse representation techniques can precisely reveal fault-induced information, thereby exhibiting valuable properties for automatic fault identification by intelligent classifiers. The effectiveness and advantages of the proposed features are confirmed by simulation and the practical fault pattern recognition of rolling bearings. Overcomplete discrete wavelet transform (DWT) Basis pursuit Sparse wavelet energy (SWE) Intelligent fault diagnosis Gan, Meng aut Zhu, Chang’an aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 28(2015), 6 vom: 17. Feb., Seite 1377-1391 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:28 year:2015 number:6 day:17 month:02 pages:1377-1391 https://doi.org/10.1007/s10845-015-1056-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 28 2015 6 17 02 1377-1391 |
spelling |
10.1007/s10845-015-1056-2 doi (DE-627)OLC2066776033 (DE-He213)s10845-015-1056-2-p DE-627 ger DE-627 rakwb eng 620 004 VZ Wang, Cong verfasserin aut Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract This paper explores sparse time-frequency distribution (TFD) using overcomplete discrete wavelet transform (DWT) and sparse representation techniques. This distribution is discovered for characterizing the periodic transient information embedded in rolling element bearings and extracting effective features that can discriminate different fault conditions. Based on the sparse TFD, a new sparse wavelet energy (SWE) feature is obtained by three main steps: first, an overcomplete discrete DWT is employed to decompose the fault signal and construct a redundant dictionary; second, the redundant dictionary is optimized by basis pursuit to obtain the sparsest TFD; finally, SWE is calculated from the new TFD to produce a feature vector for each signal. SWE features that combine the merits of overcomplete DWT and sparse representation techniques can precisely reveal fault-induced information, thereby exhibiting valuable properties for automatic fault identification by intelligent classifiers. The effectiveness and advantages of the proposed features are confirmed by simulation and the practical fault pattern recognition of rolling bearings. Overcomplete discrete wavelet transform (DWT) Basis pursuit Sparse wavelet energy (SWE) Intelligent fault diagnosis Gan, Meng aut Zhu, Chang’an aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 28(2015), 6 vom: 17. Feb., Seite 1377-1391 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:28 year:2015 number:6 day:17 month:02 pages:1377-1391 https://doi.org/10.1007/s10845-015-1056-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 28 2015 6 17 02 1377-1391 |
allfields_unstemmed |
10.1007/s10845-015-1056-2 doi (DE-627)OLC2066776033 (DE-He213)s10845-015-1056-2-p DE-627 ger DE-627 rakwb eng 620 004 VZ Wang, Cong verfasserin aut Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract This paper explores sparse time-frequency distribution (TFD) using overcomplete discrete wavelet transform (DWT) and sparse representation techniques. This distribution is discovered for characterizing the periodic transient information embedded in rolling element bearings and extracting effective features that can discriminate different fault conditions. Based on the sparse TFD, a new sparse wavelet energy (SWE) feature is obtained by three main steps: first, an overcomplete discrete DWT is employed to decompose the fault signal and construct a redundant dictionary; second, the redundant dictionary is optimized by basis pursuit to obtain the sparsest TFD; finally, SWE is calculated from the new TFD to produce a feature vector for each signal. SWE features that combine the merits of overcomplete DWT and sparse representation techniques can precisely reveal fault-induced information, thereby exhibiting valuable properties for automatic fault identification by intelligent classifiers. The effectiveness and advantages of the proposed features are confirmed by simulation and the practical fault pattern recognition of rolling bearings. Overcomplete discrete wavelet transform (DWT) Basis pursuit Sparse wavelet energy (SWE) Intelligent fault diagnosis Gan, Meng aut Zhu, Chang’an aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 28(2015), 6 vom: 17. Feb., Seite 1377-1391 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:28 year:2015 number:6 day:17 month:02 pages:1377-1391 https://doi.org/10.1007/s10845-015-1056-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 28 2015 6 17 02 1377-1391 |
allfieldsGer |
10.1007/s10845-015-1056-2 doi (DE-627)OLC2066776033 (DE-He213)s10845-015-1056-2-p DE-627 ger DE-627 rakwb eng 620 004 VZ Wang, Cong verfasserin aut Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract This paper explores sparse time-frequency distribution (TFD) using overcomplete discrete wavelet transform (DWT) and sparse representation techniques. This distribution is discovered for characterizing the periodic transient information embedded in rolling element bearings and extracting effective features that can discriminate different fault conditions. Based on the sparse TFD, a new sparse wavelet energy (SWE) feature is obtained by three main steps: first, an overcomplete discrete DWT is employed to decompose the fault signal and construct a redundant dictionary; second, the redundant dictionary is optimized by basis pursuit to obtain the sparsest TFD; finally, SWE is calculated from the new TFD to produce a feature vector for each signal. SWE features that combine the merits of overcomplete DWT and sparse representation techniques can precisely reveal fault-induced information, thereby exhibiting valuable properties for automatic fault identification by intelligent classifiers. The effectiveness and advantages of the proposed features are confirmed by simulation and the practical fault pattern recognition of rolling bearings. Overcomplete discrete wavelet transform (DWT) Basis pursuit Sparse wavelet energy (SWE) Intelligent fault diagnosis Gan, Meng aut Zhu, Chang’an aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 28(2015), 6 vom: 17. Feb., Seite 1377-1391 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:28 year:2015 number:6 day:17 month:02 pages:1377-1391 https://doi.org/10.1007/s10845-015-1056-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 28 2015 6 17 02 1377-1391 |
allfieldsSound |
10.1007/s10845-015-1056-2 doi (DE-627)OLC2066776033 (DE-He213)s10845-015-1056-2-p DE-627 ger DE-627 rakwb eng 620 004 VZ Wang, Cong verfasserin aut Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract This paper explores sparse time-frequency distribution (TFD) using overcomplete discrete wavelet transform (DWT) and sparse representation techniques. This distribution is discovered for characterizing the periodic transient information embedded in rolling element bearings and extracting effective features that can discriminate different fault conditions. Based on the sparse TFD, a new sparse wavelet energy (SWE) feature is obtained by three main steps: first, an overcomplete discrete DWT is employed to decompose the fault signal and construct a redundant dictionary; second, the redundant dictionary is optimized by basis pursuit to obtain the sparsest TFD; finally, SWE is calculated from the new TFD to produce a feature vector for each signal. SWE features that combine the merits of overcomplete DWT and sparse representation techniques can precisely reveal fault-induced information, thereby exhibiting valuable properties for automatic fault identification by intelligent classifiers. The effectiveness and advantages of the proposed features are confirmed by simulation and the practical fault pattern recognition of rolling bearings. Overcomplete discrete wavelet transform (DWT) Basis pursuit Sparse wavelet energy (SWE) Intelligent fault diagnosis Gan, Meng aut Zhu, Chang’an aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 28(2015), 6 vom: 17. Feb., Seite 1377-1391 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:28 year:2015 number:6 day:17 month:02 pages:1377-1391 https://doi.org/10.1007/s10845-015-1056-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 28 2015 6 17 02 1377-1391 |
language |
English |
source |
Enthalten in Journal of intelligent manufacturing 28(2015), 6 vom: 17. Feb., Seite 1377-1391 volume:28 year:2015 number:6 day:17 month:02 pages:1377-1391 |
sourceStr |
Enthalten in Journal of intelligent manufacturing 28(2015), 6 vom: 17. Feb., Seite 1377-1391 volume:28 year:2015 number:6 day:17 month:02 pages:1377-1391 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Overcomplete discrete wavelet transform (DWT) Basis pursuit Sparse wavelet energy (SWE) Intelligent fault diagnosis |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of intelligent manufacturing |
authorswithroles_txt_mv |
Wang, Cong @@aut@@ Gan, Meng @@aut@@ Zhu, Chang’an @@aut@@ |
publishDateDaySort_date |
2015-02-17T00:00:00Z |
hierarchy_top_id |
130892815 |
dewey-sort |
3620 |
id |
OLC2066776033 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2066776033</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503115649.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10845-015-1056-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2066776033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10845-015-1056-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Cong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper explores sparse time-frequency distribution (TFD) using overcomplete discrete wavelet transform (DWT) and sparse representation techniques. This distribution is discovered for characterizing the periodic transient information embedded in rolling element bearings and extracting effective features that can discriminate different fault conditions. Based on the sparse TFD, a new sparse wavelet energy (SWE) feature is obtained by three main steps: first, an overcomplete discrete DWT is employed to decompose the fault signal and construct a redundant dictionary; second, the redundant dictionary is optimized by basis pursuit to obtain the sparsest TFD; finally, SWE is calculated from the new TFD to produce a feature vector for each signal. SWE features that combine the merits of overcomplete DWT and sparse representation techniques can precisely reveal fault-induced information, thereby exhibiting valuable properties for automatic fault identification by intelligent classifiers. The effectiveness and advantages of the proposed features are confirmed by simulation and the practical fault pattern recognition of rolling bearings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Overcomplete discrete wavelet transform (DWT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Basis pursuit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sparse wavelet energy (SWE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligent fault diagnosis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gan, Meng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Chang’an</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent manufacturing</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">28(2015), 6 vom: 17. Feb., Seite 1377-1391</subfield><subfield code="w">(DE-627)130892815</subfield><subfield code="w">(DE-600)1041378-9</subfield><subfield code="w">(DE-576)026321106</subfield><subfield code="x">0956-5515</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:6</subfield><subfield code="g">day:17</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1377-1391</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10845-015-1056-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2015</subfield><subfield code="e">6</subfield><subfield code="b">17</subfield><subfield code="c">02</subfield><subfield code="h">1377-1391</subfield></datafield></record></collection>
|
author |
Wang, Cong |
spellingShingle |
Wang, Cong ddc 620 misc Overcomplete discrete wavelet transform (DWT) misc Basis pursuit misc Sparse wavelet energy (SWE) misc Intelligent fault diagnosis Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit |
authorStr |
Wang, Cong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130892815 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0956-5515 |
topic_title |
620 004 VZ Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit Overcomplete discrete wavelet transform (DWT) Basis pursuit Sparse wavelet energy (SWE) Intelligent fault diagnosis |
topic |
ddc 620 misc Overcomplete discrete wavelet transform (DWT) misc Basis pursuit misc Sparse wavelet energy (SWE) misc Intelligent fault diagnosis |
topic_unstemmed |
ddc 620 misc Overcomplete discrete wavelet transform (DWT) misc Basis pursuit misc Sparse wavelet energy (SWE) misc Intelligent fault diagnosis |
topic_browse |
ddc 620 misc Overcomplete discrete wavelet transform (DWT) misc Basis pursuit misc Sparse wavelet energy (SWE) misc Intelligent fault diagnosis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of intelligent manufacturing |
hierarchy_parent_id |
130892815 |
dewey-tens |
620 - Engineering 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of intelligent manufacturing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 |
title |
Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit |
ctrlnum |
(DE-627)OLC2066776033 (DE-He213)s10845-015-1056-2-p |
title_full |
Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit |
author_sort |
Wang, Cong |
journal |
Journal of intelligent manufacturing |
journalStr |
Journal of intelligent manufacturing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1377 |
author_browse |
Wang, Cong Gan, Meng Zhu, Chang’an |
container_volume |
28 |
class |
620 004 VZ |
format_se |
Aufsätze |
author-letter |
Wang, Cong |
doi_str_mv |
10.1007/s10845-015-1056-2 |
dewey-full |
620 004 |
title_sort |
intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete dwt and basis pursuit |
title_auth |
Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit |
abstract |
Abstract This paper explores sparse time-frequency distribution (TFD) using overcomplete discrete wavelet transform (DWT) and sparse representation techniques. This distribution is discovered for characterizing the periodic transient information embedded in rolling element bearings and extracting effective features that can discriminate different fault conditions. Based on the sparse TFD, a new sparse wavelet energy (SWE) feature is obtained by three main steps: first, an overcomplete discrete DWT is employed to decompose the fault signal and construct a redundant dictionary; second, the redundant dictionary is optimized by basis pursuit to obtain the sparsest TFD; finally, SWE is calculated from the new TFD to produce a feature vector for each signal. SWE features that combine the merits of overcomplete DWT and sparse representation techniques can precisely reveal fault-induced information, thereby exhibiting valuable properties for automatic fault identification by intelligent classifiers. The effectiveness and advantages of the proposed features are confirmed by simulation and the practical fault pattern recognition of rolling bearings. © Springer Science+Business Media New York 2015 |
abstractGer |
Abstract This paper explores sparse time-frequency distribution (TFD) using overcomplete discrete wavelet transform (DWT) and sparse representation techniques. This distribution is discovered for characterizing the periodic transient information embedded in rolling element bearings and extracting effective features that can discriminate different fault conditions. Based on the sparse TFD, a new sparse wavelet energy (SWE) feature is obtained by three main steps: first, an overcomplete discrete DWT is employed to decompose the fault signal and construct a redundant dictionary; second, the redundant dictionary is optimized by basis pursuit to obtain the sparsest TFD; finally, SWE is calculated from the new TFD to produce a feature vector for each signal. SWE features that combine the merits of overcomplete DWT and sparse representation techniques can precisely reveal fault-induced information, thereby exhibiting valuable properties for automatic fault identification by intelligent classifiers. The effectiveness and advantages of the proposed features are confirmed by simulation and the practical fault pattern recognition of rolling bearings. © Springer Science+Business Media New York 2015 |
abstract_unstemmed |
Abstract This paper explores sparse time-frequency distribution (TFD) using overcomplete discrete wavelet transform (DWT) and sparse representation techniques. This distribution is discovered for characterizing the periodic transient information embedded in rolling element bearings and extracting effective features that can discriminate different fault conditions. Based on the sparse TFD, a new sparse wavelet energy (SWE) feature is obtained by three main steps: first, an overcomplete discrete DWT is employed to decompose the fault signal and construct a redundant dictionary; second, the redundant dictionary is optimized by basis pursuit to obtain the sparsest TFD; finally, SWE is calculated from the new TFD to produce a feature vector for each signal. SWE features that combine the merits of overcomplete DWT and sparse representation techniques can precisely reveal fault-induced information, thereby exhibiting valuable properties for automatic fault identification by intelligent classifiers. The effectiveness and advantages of the proposed features are confirmed by simulation and the practical fault pattern recognition of rolling bearings. © Springer Science+Business Media New York 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 |
container_issue |
6 |
title_short |
Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit |
url |
https://doi.org/10.1007/s10845-015-1056-2 |
remote_bool |
false |
author2 |
Gan, Meng Zhu, Chang’an |
author2Str |
Gan, Meng Zhu, Chang’an |
ppnlink |
130892815 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10845-015-1056-2 |
up_date |
2024-07-04T05:16:22.654Z |
_version_ |
1803624311847649280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2066776033</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503115649.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10845-015-1056-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2066776033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10845-015-1056-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Cong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper explores sparse time-frequency distribution (TFD) using overcomplete discrete wavelet transform (DWT) and sparse representation techniques. This distribution is discovered for characterizing the periodic transient information embedded in rolling element bearings and extracting effective features that can discriminate different fault conditions. Based on the sparse TFD, a new sparse wavelet energy (SWE) feature is obtained by three main steps: first, an overcomplete discrete DWT is employed to decompose the fault signal and construct a redundant dictionary; second, the redundant dictionary is optimized by basis pursuit to obtain the sparsest TFD; finally, SWE is calculated from the new TFD to produce a feature vector for each signal. SWE features that combine the merits of overcomplete DWT and sparse representation techniques can precisely reveal fault-induced information, thereby exhibiting valuable properties for automatic fault identification by intelligent classifiers. The effectiveness and advantages of the proposed features are confirmed by simulation and the practical fault pattern recognition of rolling bearings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Overcomplete discrete wavelet transform (DWT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Basis pursuit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sparse wavelet energy (SWE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligent fault diagnosis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gan, Meng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Chang’an</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent manufacturing</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">28(2015), 6 vom: 17. Feb., Seite 1377-1391</subfield><subfield code="w">(DE-627)130892815</subfield><subfield code="w">(DE-600)1041378-9</subfield><subfield code="w">(DE-576)026321106</subfield><subfield code="x">0956-5515</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:6</subfield><subfield code="g">day:17</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1377-1391</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10845-015-1056-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2015</subfield><subfield code="e">6</subfield><subfield code="b">17</subfield><subfield code="c">02</subfield><subfield code="h">1377-1391</subfield></datafield></record></collection>
|
score |
7.4019384 |