A supervised sparsity-based wavelet feature for bearing fault diagnosis
Abstract This paper proposes a supervised sparsity-based wavelet feature (SSWF) for the detection of bearing fault, which combines wavelet packet transform (WPT) and sparse coding. SSWF is extracted from vibration signals by four main steps: (1) construct a WPT vector using the fault-related WPT coe...
Ausführliche Beschreibung
Autor*in: |
Wang, Cong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
Wavelet packet transform (WPT) |
---|
Anmerkung: |
© Springer Science+Business Media New York 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of intelligent manufacturing - Springer US, 1990, 30(2016), 1 vom: 01. Juli, Seite 229-239 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2016 ; number:1 ; day:01 ; month:07 ; pages:229-239 |
Links: |
---|
DOI / URN: |
10.1007/s10845-016-1243-9 |
---|
Katalog-ID: |
OLC206677782X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC206677782X | ||
003 | DE-627 | ||
005 | 20230503115704.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10845-016-1243-9 |2 doi | |
035 | |a (DE-627)OLC206677782X | ||
035 | |a (DE-He213)s10845-016-1243-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 004 |q VZ |
100 | 1 | |a Wang, Cong |e verfasserin |4 aut | |
245 | 1 | 0 | |a A supervised sparsity-based wavelet feature for bearing fault diagnosis |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2016 | ||
520 | |a Abstract This paper proposes a supervised sparsity-based wavelet feature (SSWF) for the detection of bearing fault, which combines wavelet packet transform (WPT) and sparse coding. SSWF is extracted from vibration signals by four main steps: (1) construct a WPT vector using the fault-related WPT coefficients; (2) design a structured dictionary that combines the signal characteristics and class information; (3) use the dictionary to implement the sparse coding of the WPT vectors, which can be solved by basis pursuit (BP) and (4) calculate the SSWF from the sparse coefficients. During the process, WPT can detect the fault occurrence of the bearing signal. Sparse coding based on a structured dictionary can find a robust representation of the signal and at the same time, integrate the class information. Therefore, SSWF is able to stably and discriminatively reflect different fault types, which indicates its potential in bearing fault diagnosis. Experiments on two bearing cases are conducted to verify the advantages of SSWF in the detection of bearing faults. | ||
650 | 4 | |a Wavelet packet transform (WPT) | |
650 | 4 | |a Sparse coding | |
650 | 4 | |a Structured dictionary | |
650 | 4 | |a Supervised sparsity-based wavelet feature (SSWF) | |
650 | 4 | |a Machinery fault diagnosis | |
700 | 1 | |a Gan, Meng |4 aut | |
700 | 1 | |a Zhu, Chang’an |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of intelligent manufacturing |d Springer US, 1990 |g 30(2016), 1 vom: 01. Juli, Seite 229-239 |w (DE-627)130892815 |w (DE-600)1041378-9 |w (DE-576)026321106 |x 0956-5515 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2016 |g number:1 |g day:01 |g month:07 |g pages:229-239 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10845-016-1243-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 30 |j 2016 |e 1 |b 01 |c 07 |h 229-239 |
author_variant |
c w cw m g mg c z cz |
---|---|
matchkey_str |
article:09565515:2016----::spriesastbsdaeefaueoba |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s10845-016-1243-9 doi (DE-627)OLC206677782X (DE-He213)s10845-016-1243-9-p DE-627 ger DE-627 rakwb eng 620 004 VZ Wang, Cong verfasserin aut A supervised sparsity-based wavelet feature for bearing fault diagnosis 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract This paper proposes a supervised sparsity-based wavelet feature (SSWF) for the detection of bearing fault, which combines wavelet packet transform (WPT) and sparse coding. SSWF is extracted from vibration signals by four main steps: (1) construct a WPT vector using the fault-related WPT coefficients; (2) design a structured dictionary that combines the signal characteristics and class information; (3) use the dictionary to implement the sparse coding of the WPT vectors, which can be solved by basis pursuit (BP) and (4) calculate the SSWF from the sparse coefficients. During the process, WPT can detect the fault occurrence of the bearing signal. Sparse coding based on a structured dictionary can find a robust representation of the signal and at the same time, integrate the class information. Therefore, SSWF is able to stably and discriminatively reflect different fault types, which indicates its potential in bearing fault diagnosis. Experiments on two bearing cases are conducted to verify the advantages of SSWF in the detection of bearing faults. Wavelet packet transform (WPT) Sparse coding Structured dictionary Supervised sparsity-based wavelet feature (SSWF) Machinery fault diagnosis Gan, Meng aut Zhu, Chang’an aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 30(2016), 1 vom: 01. Juli, Seite 229-239 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:30 year:2016 number:1 day:01 month:07 pages:229-239 https://doi.org/10.1007/s10845-016-1243-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 30 2016 1 01 07 229-239 |
spelling |
10.1007/s10845-016-1243-9 doi (DE-627)OLC206677782X (DE-He213)s10845-016-1243-9-p DE-627 ger DE-627 rakwb eng 620 004 VZ Wang, Cong verfasserin aut A supervised sparsity-based wavelet feature for bearing fault diagnosis 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract This paper proposes a supervised sparsity-based wavelet feature (SSWF) for the detection of bearing fault, which combines wavelet packet transform (WPT) and sparse coding. SSWF is extracted from vibration signals by four main steps: (1) construct a WPT vector using the fault-related WPT coefficients; (2) design a structured dictionary that combines the signal characteristics and class information; (3) use the dictionary to implement the sparse coding of the WPT vectors, which can be solved by basis pursuit (BP) and (4) calculate the SSWF from the sparse coefficients. During the process, WPT can detect the fault occurrence of the bearing signal. Sparse coding based on a structured dictionary can find a robust representation of the signal and at the same time, integrate the class information. Therefore, SSWF is able to stably and discriminatively reflect different fault types, which indicates its potential in bearing fault diagnosis. Experiments on two bearing cases are conducted to verify the advantages of SSWF in the detection of bearing faults. Wavelet packet transform (WPT) Sparse coding Structured dictionary Supervised sparsity-based wavelet feature (SSWF) Machinery fault diagnosis Gan, Meng aut Zhu, Chang’an aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 30(2016), 1 vom: 01. Juli, Seite 229-239 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:30 year:2016 number:1 day:01 month:07 pages:229-239 https://doi.org/10.1007/s10845-016-1243-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 30 2016 1 01 07 229-239 |
allfields_unstemmed |
10.1007/s10845-016-1243-9 doi (DE-627)OLC206677782X (DE-He213)s10845-016-1243-9-p DE-627 ger DE-627 rakwb eng 620 004 VZ Wang, Cong verfasserin aut A supervised sparsity-based wavelet feature for bearing fault diagnosis 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract This paper proposes a supervised sparsity-based wavelet feature (SSWF) for the detection of bearing fault, which combines wavelet packet transform (WPT) and sparse coding. SSWF is extracted from vibration signals by four main steps: (1) construct a WPT vector using the fault-related WPT coefficients; (2) design a structured dictionary that combines the signal characteristics and class information; (3) use the dictionary to implement the sparse coding of the WPT vectors, which can be solved by basis pursuit (BP) and (4) calculate the SSWF from the sparse coefficients. During the process, WPT can detect the fault occurrence of the bearing signal. Sparse coding based on a structured dictionary can find a robust representation of the signal and at the same time, integrate the class information. Therefore, SSWF is able to stably and discriminatively reflect different fault types, which indicates its potential in bearing fault diagnosis. Experiments on two bearing cases are conducted to verify the advantages of SSWF in the detection of bearing faults. Wavelet packet transform (WPT) Sparse coding Structured dictionary Supervised sparsity-based wavelet feature (SSWF) Machinery fault diagnosis Gan, Meng aut Zhu, Chang’an aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 30(2016), 1 vom: 01. Juli, Seite 229-239 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:30 year:2016 number:1 day:01 month:07 pages:229-239 https://doi.org/10.1007/s10845-016-1243-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 30 2016 1 01 07 229-239 |
allfieldsGer |
10.1007/s10845-016-1243-9 doi (DE-627)OLC206677782X (DE-He213)s10845-016-1243-9-p DE-627 ger DE-627 rakwb eng 620 004 VZ Wang, Cong verfasserin aut A supervised sparsity-based wavelet feature for bearing fault diagnosis 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract This paper proposes a supervised sparsity-based wavelet feature (SSWF) for the detection of bearing fault, which combines wavelet packet transform (WPT) and sparse coding. SSWF is extracted from vibration signals by four main steps: (1) construct a WPT vector using the fault-related WPT coefficients; (2) design a structured dictionary that combines the signal characteristics and class information; (3) use the dictionary to implement the sparse coding of the WPT vectors, which can be solved by basis pursuit (BP) and (4) calculate the SSWF from the sparse coefficients. During the process, WPT can detect the fault occurrence of the bearing signal. Sparse coding based on a structured dictionary can find a robust representation of the signal and at the same time, integrate the class information. Therefore, SSWF is able to stably and discriminatively reflect different fault types, which indicates its potential in bearing fault diagnosis. Experiments on two bearing cases are conducted to verify the advantages of SSWF in the detection of bearing faults. Wavelet packet transform (WPT) Sparse coding Structured dictionary Supervised sparsity-based wavelet feature (SSWF) Machinery fault diagnosis Gan, Meng aut Zhu, Chang’an aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 30(2016), 1 vom: 01. Juli, Seite 229-239 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:30 year:2016 number:1 day:01 month:07 pages:229-239 https://doi.org/10.1007/s10845-016-1243-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 30 2016 1 01 07 229-239 |
allfieldsSound |
10.1007/s10845-016-1243-9 doi (DE-627)OLC206677782X (DE-He213)s10845-016-1243-9-p DE-627 ger DE-627 rakwb eng 620 004 VZ Wang, Cong verfasserin aut A supervised sparsity-based wavelet feature for bearing fault diagnosis 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract This paper proposes a supervised sparsity-based wavelet feature (SSWF) for the detection of bearing fault, which combines wavelet packet transform (WPT) and sparse coding. SSWF is extracted from vibration signals by four main steps: (1) construct a WPT vector using the fault-related WPT coefficients; (2) design a structured dictionary that combines the signal characteristics and class information; (3) use the dictionary to implement the sparse coding of the WPT vectors, which can be solved by basis pursuit (BP) and (4) calculate the SSWF from the sparse coefficients. During the process, WPT can detect the fault occurrence of the bearing signal. Sparse coding based on a structured dictionary can find a robust representation of the signal and at the same time, integrate the class information. Therefore, SSWF is able to stably and discriminatively reflect different fault types, which indicates its potential in bearing fault diagnosis. Experiments on two bearing cases are conducted to verify the advantages of SSWF in the detection of bearing faults. Wavelet packet transform (WPT) Sparse coding Structured dictionary Supervised sparsity-based wavelet feature (SSWF) Machinery fault diagnosis Gan, Meng aut Zhu, Chang’an aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 30(2016), 1 vom: 01. Juli, Seite 229-239 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:30 year:2016 number:1 day:01 month:07 pages:229-239 https://doi.org/10.1007/s10845-016-1243-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 30 2016 1 01 07 229-239 |
language |
English |
source |
Enthalten in Journal of intelligent manufacturing 30(2016), 1 vom: 01. Juli, Seite 229-239 volume:30 year:2016 number:1 day:01 month:07 pages:229-239 |
sourceStr |
Enthalten in Journal of intelligent manufacturing 30(2016), 1 vom: 01. Juli, Seite 229-239 volume:30 year:2016 number:1 day:01 month:07 pages:229-239 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Wavelet packet transform (WPT) Sparse coding Structured dictionary Supervised sparsity-based wavelet feature (SSWF) Machinery fault diagnosis |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of intelligent manufacturing |
authorswithroles_txt_mv |
Wang, Cong @@aut@@ Gan, Meng @@aut@@ Zhu, Chang’an @@aut@@ |
publishDateDaySort_date |
2016-07-01T00:00:00Z |
hierarchy_top_id |
130892815 |
dewey-sort |
3620 |
id |
OLC206677782X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206677782X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503115704.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10845-016-1243-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206677782X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10845-016-1243-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Cong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A supervised sparsity-based wavelet feature for bearing fault diagnosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper proposes a supervised sparsity-based wavelet feature (SSWF) for the detection of bearing fault, which combines wavelet packet transform (WPT) and sparse coding. SSWF is extracted from vibration signals by four main steps: (1) construct a WPT vector using the fault-related WPT coefficients; (2) design a structured dictionary that combines the signal characteristics and class information; (3) use the dictionary to implement the sparse coding of the WPT vectors, which can be solved by basis pursuit (BP) and (4) calculate the SSWF from the sparse coefficients. During the process, WPT can detect the fault occurrence of the bearing signal. Sparse coding based on a structured dictionary can find a robust representation of the signal and at the same time, integrate the class information. Therefore, SSWF is able to stably and discriminatively reflect different fault types, which indicates its potential in bearing fault diagnosis. Experiments on two bearing cases are conducted to verify the advantages of SSWF in the detection of bearing faults.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wavelet packet transform (WPT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sparse coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structured dictionary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supervised sparsity-based wavelet feature (SSWF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machinery fault diagnosis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gan, Meng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Chang’an</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent manufacturing</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">30(2016), 1 vom: 01. Juli, Seite 229-239</subfield><subfield code="w">(DE-627)130892815</subfield><subfield code="w">(DE-600)1041378-9</subfield><subfield code="w">(DE-576)026321106</subfield><subfield code="x">0956-5515</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:229-239</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10845-016-1243-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">07</subfield><subfield code="h">229-239</subfield></datafield></record></collection>
|
author |
Wang, Cong |
spellingShingle |
Wang, Cong ddc 620 misc Wavelet packet transform (WPT) misc Sparse coding misc Structured dictionary misc Supervised sparsity-based wavelet feature (SSWF) misc Machinery fault diagnosis A supervised sparsity-based wavelet feature for bearing fault diagnosis |
authorStr |
Wang, Cong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130892815 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0956-5515 |
topic_title |
620 004 VZ A supervised sparsity-based wavelet feature for bearing fault diagnosis Wavelet packet transform (WPT) Sparse coding Structured dictionary Supervised sparsity-based wavelet feature (SSWF) Machinery fault diagnosis |
topic |
ddc 620 misc Wavelet packet transform (WPT) misc Sparse coding misc Structured dictionary misc Supervised sparsity-based wavelet feature (SSWF) misc Machinery fault diagnosis |
topic_unstemmed |
ddc 620 misc Wavelet packet transform (WPT) misc Sparse coding misc Structured dictionary misc Supervised sparsity-based wavelet feature (SSWF) misc Machinery fault diagnosis |
topic_browse |
ddc 620 misc Wavelet packet transform (WPT) misc Sparse coding misc Structured dictionary misc Supervised sparsity-based wavelet feature (SSWF) misc Machinery fault diagnosis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of intelligent manufacturing |
hierarchy_parent_id |
130892815 |
dewey-tens |
620 - Engineering 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of intelligent manufacturing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 |
title |
A supervised sparsity-based wavelet feature for bearing fault diagnosis |
ctrlnum |
(DE-627)OLC206677782X (DE-He213)s10845-016-1243-9-p |
title_full |
A supervised sparsity-based wavelet feature for bearing fault diagnosis |
author_sort |
Wang, Cong |
journal |
Journal of intelligent manufacturing |
journalStr |
Journal of intelligent manufacturing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
229 |
author_browse |
Wang, Cong Gan, Meng Zhu, Chang’an |
container_volume |
30 |
class |
620 004 VZ |
format_se |
Aufsätze |
author-letter |
Wang, Cong |
doi_str_mv |
10.1007/s10845-016-1243-9 |
dewey-full |
620 004 |
title_sort |
a supervised sparsity-based wavelet feature for bearing fault diagnosis |
title_auth |
A supervised sparsity-based wavelet feature for bearing fault diagnosis |
abstract |
Abstract This paper proposes a supervised sparsity-based wavelet feature (SSWF) for the detection of bearing fault, which combines wavelet packet transform (WPT) and sparse coding. SSWF is extracted from vibration signals by four main steps: (1) construct a WPT vector using the fault-related WPT coefficients; (2) design a structured dictionary that combines the signal characteristics and class information; (3) use the dictionary to implement the sparse coding of the WPT vectors, which can be solved by basis pursuit (BP) and (4) calculate the SSWF from the sparse coefficients. During the process, WPT can detect the fault occurrence of the bearing signal. Sparse coding based on a structured dictionary can find a robust representation of the signal and at the same time, integrate the class information. Therefore, SSWF is able to stably and discriminatively reflect different fault types, which indicates its potential in bearing fault diagnosis. Experiments on two bearing cases are conducted to verify the advantages of SSWF in the detection of bearing faults. © Springer Science+Business Media New York 2016 |
abstractGer |
Abstract This paper proposes a supervised sparsity-based wavelet feature (SSWF) for the detection of bearing fault, which combines wavelet packet transform (WPT) and sparse coding. SSWF is extracted from vibration signals by four main steps: (1) construct a WPT vector using the fault-related WPT coefficients; (2) design a structured dictionary that combines the signal characteristics and class information; (3) use the dictionary to implement the sparse coding of the WPT vectors, which can be solved by basis pursuit (BP) and (4) calculate the SSWF from the sparse coefficients. During the process, WPT can detect the fault occurrence of the bearing signal. Sparse coding based on a structured dictionary can find a robust representation of the signal and at the same time, integrate the class information. Therefore, SSWF is able to stably and discriminatively reflect different fault types, which indicates its potential in bearing fault diagnosis. Experiments on two bearing cases are conducted to verify the advantages of SSWF in the detection of bearing faults. © Springer Science+Business Media New York 2016 |
abstract_unstemmed |
Abstract This paper proposes a supervised sparsity-based wavelet feature (SSWF) for the detection of bearing fault, which combines wavelet packet transform (WPT) and sparse coding. SSWF is extracted from vibration signals by four main steps: (1) construct a WPT vector using the fault-related WPT coefficients; (2) design a structured dictionary that combines the signal characteristics and class information; (3) use the dictionary to implement the sparse coding of the WPT vectors, which can be solved by basis pursuit (BP) and (4) calculate the SSWF from the sparse coefficients. During the process, WPT can detect the fault occurrence of the bearing signal. Sparse coding based on a structured dictionary can find a robust representation of the signal and at the same time, integrate the class information. Therefore, SSWF is able to stably and discriminatively reflect different fault types, which indicates its potential in bearing fault diagnosis. Experiments on two bearing cases are conducted to verify the advantages of SSWF in the detection of bearing faults. © Springer Science+Business Media New York 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 |
container_issue |
1 |
title_short |
A supervised sparsity-based wavelet feature for bearing fault diagnosis |
url |
https://doi.org/10.1007/s10845-016-1243-9 |
remote_bool |
false |
author2 |
Gan, Meng Zhu, Chang’an |
author2Str |
Gan, Meng Zhu, Chang’an |
ppnlink |
130892815 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10845-016-1243-9 |
up_date |
2024-07-04T05:16:38.277Z |
_version_ |
1803624328216969216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC206677782X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503115704.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10845-016-1243-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC206677782X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10845-016-1243-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Cong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A supervised sparsity-based wavelet feature for bearing fault diagnosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper proposes a supervised sparsity-based wavelet feature (SSWF) for the detection of bearing fault, which combines wavelet packet transform (WPT) and sparse coding. SSWF is extracted from vibration signals by four main steps: (1) construct a WPT vector using the fault-related WPT coefficients; (2) design a structured dictionary that combines the signal characteristics and class information; (3) use the dictionary to implement the sparse coding of the WPT vectors, which can be solved by basis pursuit (BP) and (4) calculate the SSWF from the sparse coefficients. During the process, WPT can detect the fault occurrence of the bearing signal. Sparse coding based on a structured dictionary can find a robust representation of the signal and at the same time, integrate the class information. Therefore, SSWF is able to stably and discriminatively reflect different fault types, which indicates its potential in bearing fault diagnosis. Experiments on two bearing cases are conducted to verify the advantages of SSWF in the detection of bearing faults.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wavelet packet transform (WPT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sparse coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structured dictionary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supervised sparsity-based wavelet feature (SSWF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machinery fault diagnosis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gan, Meng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Chang’an</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent manufacturing</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">30(2016), 1 vom: 01. Juli, Seite 229-239</subfield><subfield code="w">(DE-627)130892815</subfield><subfield code="w">(DE-600)1041378-9</subfield><subfield code="w">(DE-576)026321106</subfield><subfield code="x">0956-5515</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:229-239</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10845-016-1243-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">07</subfield><subfield code="h">229-239</subfield></datafield></record></collection>
|
score |
7.401642 |