Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm
Abstract Multi-agent and deteriorating scheduling has gained an increasing concern from academic and industrial communities in recent years. This study addresses a two-agent stochastic flow shop deteriorating scheduling problem with the objectives of minimizing the makespan of the first agent and th...
Ausführliche Beschreibung
Autor*in: |
Fu, Yaping [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
Multi-objective multi-agent scheduling |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of intelligent manufacturing - Springer US, 1990, 30(2018), 5 vom: 06. Jan., Seite 2257-2272 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2018 ; number:5 ; day:06 ; month:01 ; pages:2257-2272 |
Links: |
---|
DOI / URN: |
10.1007/s10845-017-1385-4 |
---|
Katalog-ID: |
OLC2066779008 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2066779008 | ||
003 | DE-627 | ||
005 | 20230503115714.0 | ||
007 | tu | ||
008 | 200820s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10845-017-1385-4 |2 doi | |
035 | |a (DE-627)OLC2066779008 | ||
035 | |a (DE-He213)s10845-017-1385-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 004 |q VZ |
100 | 1 | |a Fu, Yaping |e verfasserin |4 aut | |
245 | 1 | 0 | |a Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2018 | ||
520 | |a Abstract Multi-agent and deteriorating scheduling has gained an increasing concern from academic and industrial communities in recent years. This study addresses a two-agent stochastic flow shop deteriorating scheduling problem with the objectives of minimizing the makespan of the first agent and the total tardiness of the second agent. In the investigated problem, the normal processing time of jobs is a random variable, and the actual processing time of jobs is a linear function of their normal processing time and starting time. To solve this problem efficiently, this study proposes a hybrid multi-objective evolutionary algorithm which is a combination of an evolutionary algorithm and a local search method. It maintains two populations and one archive. The two populations are utilized to execute the global and local searches, where one population employs an evolutionary algorithm to explore the whole solution space, and the other applies a local search method to exploit the promising regions. The archive is used to guide the computation resource allocation in the search process. Some special techniques, i.e., evolutionary methods, local search methods and information exchange strategies between two populations, are designed to enhance the exploration and exploitation ability. Comparing with the classical and popular multi-objective evolutionary algorithms on some test instances, the experimental results show that the proposed algorithm can produce satisfactory solution for the investigated problem. | ||
650 | 4 | |a Flow shop scheduling | |
650 | 4 | |a Deteriorating scheduling | |
650 | 4 | |a Multi-objective multi-agent scheduling | |
650 | 4 | |a Multi-objective evolutionary algorithm | |
650 | 4 | |a Multipopulation | |
700 | 1 | |a Wang, Hongfeng |4 aut | |
700 | 1 | |a Tian, Guangdong |4 aut | |
700 | 1 | |a Li, Zhiwu |4 aut | |
700 | 1 | |a Hu, Hesuan |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of intelligent manufacturing |d Springer US, 1990 |g 30(2018), 5 vom: 06. Jan., Seite 2257-2272 |w (DE-627)130892815 |w (DE-600)1041378-9 |w (DE-576)026321106 |x 0956-5515 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2018 |g number:5 |g day:06 |g month:01 |g pages:2257-2272 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10845-017-1385-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 30 |j 2018 |e 5 |b 06 |c 01 |h 2257-2272 |
author_variant |
y f yf h w hw g t gt z l zl h h hh |
---|---|
matchkey_str |
article:09565515:2018----::waettcatclwhpeeirtnshdlnvahbimlibe |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s10845-017-1385-4 doi (DE-627)OLC2066779008 (DE-He213)s10845-017-1385-4-p DE-627 ger DE-627 rakwb eng 620 004 VZ Fu, Yaping verfasserin aut Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Multi-agent and deteriorating scheduling has gained an increasing concern from academic and industrial communities in recent years. This study addresses a two-agent stochastic flow shop deteriorating scheduling problem with the objectives of minimizing the makespan of the first agent and the total tardiness of the second agent. In the investigated problem, the normal processing time of jobs is a random variable, and the actual processing time of jobs is a linear function of their normal processing time and starting time. To solve this problem efficiently, this study proposes a hybrid multi-objective evolutionary algorithm which is a combination of an evolutionary algorithm and a local search method. It maintains two populations and one archive. The two populations are utilized to execute the global and local searches, where one population employs an evolutionary algorithm to explore the whole solution space, and the other applies a local search method to exploit the promising regions. The archive is used to guide the computation resource allocation in the search process. Some special techniques, i.e., evolutionary methods, local search methods and information exchange strategies between two populations, are designed to enhance the exploration and exploitation ability. Comparing with the classical and popular multi-objective evolutionary algorithms on some test instances, the experimental results show that the proposed algorithm can produce satisfactory solution for the investigated problem. Flow shop scheduling Deteriorating scheduling Multi-objective multi-agent scheduling Multi-objective evolutionary algorithm Multipopulation Wang, Hongfeng aut Tian, Guangdong aut Li, Zhiwu aut Hu, Hesuan aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 30(2018), 5 vom: 06. Jan., Seite 2257-2272 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:30 year:2018 number:5 day:06 month:01 pages:2257-2272 https://doi.org/10.1007/s10845-017-1385-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 30 2018 5 06 01 2257-2272 |
spelling |
10.1007/s10845-017-1385-4 doi (DE-627)OLC2066779008 (DE-He213)s10845-017-1385-4-p DE-627 ger DE-627 rakwb eng 620 004 VZ Fu, Yaping verfasserin aut Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Multi-agent and deteriorating scheduling has gained an increasing concern from academic and industrial communities in recent years. This study addresses a two-agent stochastic flow shop deteriorating scheduling problem with the objectives of minimizing the makespan of the first agent and the total tardiness of the second agent. In the investigated problem, the normal processing time of jobs is a random variable, and the actual processing time of jobs is a linear function of their normal processing time and starting time. To solve this problem efficiently, this study proposes a hybrid multi-objective evolutionary algorithm which is a combination of an evolutionary algorithm and a local search method. It maintains two populations and one archive. The two populations are utilized to execute the global and local searches, where one population employs an evolutionary algorithm to explore the whole solution space, and the other applies a local search method to exploit the promising regions. The archive is used to guide the computation resource allocation in the search process. Some special techniques, i.e., evolutionary methods, local search methods and information exchange strategies between two populations, are designed to enhance the exploration and exploitation ability. Comparing with the classical and popular multi-objective evolutionary algorithms on some test instances, the experimental results show that the proposed algorithm can produce satisfactory solution for the investigated problem. Flow shop scheduling Deteriorating scheduling Multi-objective multi-agent scheduling Multi-objective evolutionary algorithm Multipopulation Wang, Hongfeng aut Tian, Guangdong aut Li, Zhiwu aut Hu, Hesuan aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 30(2018), 5 vom: 06. Jan., Seite 2257-2272 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:30 year:2018 number:5 day:06 month:01 pages:2257-2272 https://doi.org/10.1007/s10845-017-1385-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 30 2018 5 06 01 2257-2272 |
allfields_unstemmed |
10.1007/s10845-017-1385-4 doi (DE-627)OLC2066779008 (DE-He213)s10845-017-1385-4-p DE-627 ger DE-627 rakwb eng 620 004 VZ Fu, Yaping verfasserin aut Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Multi-agent and deteriorating scheduling has gained an increasing concern from academic and industrial communities in recent years. This study addresses a two-agent stochastic flow shop deteriorating scheduling problem with the objectives of minimizing the makespan of the first agent and the total tardiness of the second agent. In the investigated problem, the normal processing time of jobs is a random variable, and the actual processing time of jobs is a linear function of their normal processing time and starting time. To solve this problem efficiently, this study proposes a hybrid multi-objective evolutionary algorithm which is a combination of an evolutionary algorithm and a local search method. It maintains two populations and one archive. The two populations are utilized to execute the global and local searches, where one population employs an evolutionary algorithm to explore the whole solution space, and the other applies a local search method to exploit the promising regions. The archive is used to guide the computation resource allocation in the search process. Some special techniques, i.e., evolutionary methods, local search methods and information exchange strategies between two populations, are designed to enhance the exploration and exploitation ability. Comparing with the classical and popular multi-objective evolutionary algorithms on some test instances, the experimental results show that the proposed algorithm can produce satisfactory solution for the investigated problem. Flow shop scheduling Deteriorating scheduling Multi-objective multi-agent scheduling Multi-objective evolutionary algorithm Multipopulation Wang, Hongfeng aut Tian, Guangdong aut Li, Zhiwu aut Hu, Hesuan aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 30(2018), 5 vom: 06. Jan., Seite 2257-2272 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:30 year:2018 number:5 day:06 month:01 pages:2257-2272 https://doi.org/10.1007/s10845-017-1385-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 30 2018 5 06 01 2257-2272 |
allfieldsGer |
10.1007/s10845-017-1385-4 doi (DE-627)OLC2066779008 (DE-He213)s10845-017-1385-4-p DE-627 ger DE-627 rakwb eng 620 004 VZ Fu, Yaping verfasserin aut Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Multi-agent and deteriorating scheduling has gained an increasing concern from academic and industrial communities in recent years. This study addresses a two-agent stochastic flow shop deteriorating scheduling problem with the objectives of minimizing the makespan of the first agent and the total tardiness of the second agent. In the investigated problem, the normal processing time of jobs is a random variable, and the actual processing time of jobs is a linear function of their normal processing time and starting time. To solve this problem efficiently, this study proposes a hybrid multi-objective evolutionary algorithm which is a combination of an evolutionary algorithm and a local search method. It maintains two populations and one archive. The two populations are utilized to execute the global and local searches, where one population employs an evolutionary algorithm to explore the whole solution space, and the other applies a local search method to exploit the promising regions. The archive is used to guide the computation resource allocation in the search process. Some special techniques, i.e., evolutionary methods, local search methods and information exchange strategies between two populations, are designed to enhance the exploration and exploitation ability. Comparing with the classical and popular multi-objective evolutionary algorithms on some test instances, the experimental results show that the proposed algorithm can produce satisfactory solution for the investigated problem. Flow shop scheduling Deteriorating scheduling Multi-objective multi-agent scheduling Multi-objective evolutionary algorithm Multipopulation Wang, Hongfeng aut Tian, Guangdong aut Li, Zhiwu aut Hu, Hesuan aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 30(2018), 5 vom: 06. Jan., Seite 2257-2272 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:30 year:2018 number:5 day:06 month:01 pages:2257-2272 https://doi.org/10.1007/s10845-017-1385-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 30 2018 5 06 01 2257-2272 |
allfieldsSound |
10.1007/s10845-017-1385-4 doi (DE-627)OLC2066779008 (DE-He213)s10845-017-1385-4-p DE-627 ger DE-627 rakwb eng 620 004 VZ Fu, Yaping verfasserin aut Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Multi-agent and deteriorating scheduling has gained an increasing concern from academic and industrial communities in recent years. This study addresses a two-agent stochastic flow shop deteriorating scheduling problem with the objectives of minimizing the makespan of the first agent and the total tardiness of the second agent. In the investigated problem, the normal processing time of jobs is a random variable, and the actual processing time of jobs is a linear function of their normal processing time and starting time. To solve this problem efficiently, this study proposes a hybrid multi-objective evolutionary algorithm which is a combination of an evolutionary algorithm and a local search method. It maintains two populations and one archive. The two populations are utilized to execute the global and local searches, where one population employs an evolutionary algorithm to explore the whole solution space, and the other applies a local search method to exploit the promising regions. The archive is used to guide the computation resource allocation in the search process. Some special techniques, i.e., evolutionary methods, local search methods and information exchange strategies between two populations, are designed to enhance the exploration and exploitation ability. Comparing with the classical and popular multi-objective evolutionary algorithms on some test instances, the experimental results show that the proposed algorithm can produce satisfactory solution for the investigated problem. Flow shop scheduling Deteriorating scheduling Multi-objective multi-agent scheduling Multi-objective evolutionary algorithm Multipopulation Wang, Hongfeng aut Tian, Guangdong aut Li, Zhiwu aut Hu, Hesuan aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 30(2018), 5 vom: 06. Jan., Seite 2257-2272 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:30 year:2018 number:5 day:06 month:01 pages:2257-2272 https://doi.org/10.1007/s10845-017-1385-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 30 2018 5 06 01 2257-2272 |
language |
English |
source |
Enthalten in Journal of intelligent manufacturing 30(2018), 5 vom: 06. Jan., Seite 2257-2272 volume:30 year:2018 number:5 day:06 month:01 pages:2257-2272 |
sourceStr |
Enthalten in Journal of intelligent manufacturing 30(2018), 5 vom: 06. Jan., Seite 2257-2272 volume:30 year:2018 number:5 day:06 month:01 pages:2257-2272 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Flow shop scheduling Deteriorating scheduling Multi-objective multi-agent scheduling Multi-objective evolutionary algorithm Multipopulation |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of intelligent manufacturing |
authorswithroles_txt_mv |
Fu, Yaping @@aut@@ Wang, Hongfeng @@aut@@ Tian, Guangdong @@aut@@ Li, Zhiwu @@aut@@ Hu, Hesuan @@aut@@ |
publishDateDaySort_date |
2018-01-06T00:00:00Z |
hierarchy_top_id |
130892815 |
dewey-sort |
3620 |
id |
OLC2066779008 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2066779008</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503115714.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10845-017-1385-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2066779008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10845-017-1385-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fu, Yaping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Multi-agent and deteriorating scheduling has gained an increasing concern from academic and industrial communities in recent years. This study addresses a two-agent stochastic flow shop deteriorating scheduling problem with the objectives of minimizing the makespan of the first agent and the total tardiness of the second agent. In the investigated problem, the normal processing time of jobs is a random variable, and the actual processing time of jobs is a linear function of their normal processing time and starting time. To solve this problem efficiently, this study proposes a hybrid multi-objective evolutionary algorithm which is a combination of an evolutionary algorithm and a local search method. It maintains two populations and one archive. The two populations are utilized to execute the global and local searches, where one population employs an evolutionary algorithm to explore the whole solution space, and the other applies a local search method to exploit the promising regions. The archive is used to guide the computation resource allocation in the search process. Some special techniques, i.e., evolutionary methods, local search methods and information exchange strategies between two populations, are designed to enhance the exploration and exploitation ability. Comparing with the classical and popular multi-objective evolutionary algorithms on some test instances, the experimental results show that the proposed algorithm can produce satisfactory solution for the investigated problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow shop scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deteriorating scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective multi-agent scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective evolutionary algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multipopulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hongfeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Guangdong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zhiwu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Hesuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent manufacturing</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">30(2018), 5 vom: 06. Jan., Seite 2257-2272</subfield><subfield code="w">(DE-627)130892815</subfield><subfield code="w">(DE-600)1041378-9</subfield><subfield code="w">(DE-576)026321106</subfield><subfield code="x">0956-5515</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:5</subfield><subfield code="g">day:06</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:2257-2272</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10845-017-1385-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2018</subfield><subfield code="e">5</subfield><subfield code="b">06</subfield><subfield code="c">01</subfield><subfield code="h">2257-2272</subfield></datafield></record></collection>
|
author |
Fu, Yaping |
spellingShingle |
Fu, Yaping ddc 620 misc Flow shop scheduling misc Deteriorating scheduling misc Multi-objective multi-agent scheduling misc Multi-objective evolutionary algorithm misc Multipopulation Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm |
authorStr |
Fu, Yaping |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130892815 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0956-5515 |
topic_title |
620 004 VZ Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm Flow shop scheduling Deteriorating scheduling Multi-objective multi-agent scheduling Multi-objective evolutionary algorithm Multipopulation |
topic |
ddc 620 misc Flow shop scheduling misc Deteriorating scheduling misc Multi-objective multi-agent scheduling misc Multi-objective evolutionary algorithm misc Multipopulation |
topic_unstemmed |
ddc 620 misc Flow shop scheduling misc Deteriorating scheduling misc Multi-objective multi-agent scheduling misc Multi-objective evolutionary algorithm misc Multipopulation |
topic_browse |
ddc 620 misc Flow shop scheduling misc Deteriorating scheduling misc Multi-objective multi-agent scheduling misc Multi-objective evolutionary algorithm misc Multipopulation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of intelligent manufacturing |
hierarchy_parent_id |
130892815 |
dewey-tens |
620 - Engineering 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of intelligent manufacturing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 |
title |
Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm |
ctrlnum |
(DE-627)OLC2066779008 (DE-He213)s10845-017-1385-4-p |
title_full |
Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm |
author_sort |
Fu, Yaping |
journal |
Journal of intelligent manufacturing |
journalStr |
Journal of intelligent manufacturing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
2257 |
author_browse |
Fu, Yaping Wang, Hongfeng Tian, Guangdong Li, Zhiwu Hu, Hesuan |
container_volume |
30 |
class |
620 004 VZ |
format_se |
Aufsätze |
author-letter |
Fu, Yaping |
doi_str_mv |
10.1007/s10845-017-1385-4 |
dewey-full |
620 004 |
title_sort |
two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm |
title_auth |
Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm |
abstract |
Abstract Multi-agent and deteriorating scheduling has gained an increasing concern from academic and industrial communities in recent years. This study addresses a two-agent stochastic flow shop deteriorating scheduling problem with the objectives of minimizing the makespan of the first agent and the total tardiness of the second agent. In the investigated problem, the normal processing time of jobs is a random variable, and the actual processing time of jobs is a linear function of their normal processing time and starting time. To solve this problem efficiently, this study proposes a hybrid multi-objective evolutionary algorithm which is a combination of an evolutionary algorithm and a local search method. It maintains two populations and one archive. The two populations are utilized to execute the global and local searches, where one population employs an evolutionary algorithm to explore the whole solution space, and the other applies a local search method to exploit the promising regions. The archive is used to guide the computation resource allocation in the search process. Some special techniques, i.e., evolutionary methods, local search methods and information exchange strategies between two populations, are designed to enhance the exploration and exploitation ability. Comparing with the classical and popular multi-objective evolutionary algorithms on some test instances, the experimental results show that the proposed algorithm can produce satisfactory solution for the investigated problem. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstractGer |
Abstract Multi-agent and deteriorating scheduling has gained an increasing concern from academic and industrial communities in recent years. This study addresses a two-agent stochastic flow shop deteriorating scheduling problem with the objectives of minimizing the makespan of the first agent and the total tardiness of the second agent. In the investigated problem, the normal processing time of jobs is a random variable, and the actual processing time of jobs is a linear function of their normal processing time and starting time. To solve this problem efficiently, this study proposes a hybrid multi-objective evolutionary algorithm which is a combination of an evolutionary algorithm and a local search method. It maintains two populations and one archive. The two populations are utilized to execute the global and local searches, where one population employs an evolutionary algorithm to explore the whole solution space, and the other applies a local search method to exploit the promising regions. The archive is used to guide the computation resource allocation in the search process. Some special techniques, i.e., evolutionary methods, local search methods and information exchange strategies between two populations, are designed to enhance the exploration and exploitation ability. Comparing with the classical and popular multi-objective evolutionary algorithms on some test instances, the experimental results show that the proposed algorithm can produce satisfactory solution for the investigated problem. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract Multi-agent and deteriorating scheduling has gained an increasing concern from academic and industrial communities in recent years. This study addresses a two-agent stochastic flow shop deteriorating scheduling problem with the objectives of minimizing the makespan of the first agent and the total tardiness of the second agent. In the investigated problem, the normal processing time of jobs is a random variable, and the actual processing time of jobs is a linear function of their normal processing time and starting time. To solve this problem efficiently, this study proposes a hybrid multi-objective evolutionary algorithm which is a combination of an evolutionary algorithm and a local search method. It maintains two populations and one archive. The two populations are utilized to execute the global and local searches, where one population employs an evolutionary algorithm to explore the whole solution space, and the other applies a local search method to exploit the promising regions. The archive is used to guide the computation resource allocation in the search process. Some special techniques, i.e., evolutionary methods, local search methods and information exchange strategies between two populations, are designed to enhance the exploration and exploitation ability. Comparing with the classical and popular multi-objective evolutionary algorithms on some test instances, the experimental results show that the proposed algorithm can produce satisfactory solution for the investigated problem. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 |
container_issue |
5 |
title_short |
Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm |
url |
https://doi.org/10.1007/s10845-017-1385-4 |
remote_bool |
false |
author2 |
Wang, Hongfeng Tian, Guangdong Li, Zhiwu Hu, Hesuan |
author2Str |
Wang, Hongfeng Tian, Guangdong Li, Zhiwu Hu, Hesuan |
ppnlink |
130892815 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10845-017-1385-4 |
up_date |
2024-07-04T05:16:48.975Z |
_version_ |
1803624339434635264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2066779008</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503115714.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10845-017-1385-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2066779008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10845-017-1385-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fu, Yaping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Multi-agent and deteriorating scheduling has gained an increasing concern from academic and industrial communities in recent years. This study addresses a two-agent stochastic flow shop deteriorating scheduling problem with the objectives of minimizing the makespan of the first agent and the total tardiness of the second agent. In the investigated problem, the normal processing time of jobs is a random variable, and the actual processing time of jobs is a linear function of their normal processing time and starting time. To solve this problem efficiently, this study proposes a hybrid multi-objective evolutionary algorithm which is a combination of an evolutionary algorithm and a local search method. It maintains two populations and one archive. The two populations are utilized to execute the global and local searches, where one population employs an evolutionary algorithm to explore the whole solution space, and the other applies a local search method to exploit the promising regions. The archive is used to guide the computation resource allocation in the search process. Some special techniques, i.e., evolutionary methods, local search methods and information exchange strategies between two populations, are designed to enhance the exploration and exploitation ability. Comparing with the classical and popular multi-objective evolutionary algorithms on some test instances, the experimental results show that the proposed algorithm can produce satisfactory solution for the investigated problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow shop scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deteriorating scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective multi-agent scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective evolutionary algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multipopulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hongfeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Guangdong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zhiwu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Hesuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent manufacturing</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">30(2018), 5 vom: 06. Jan., Seite 2257-2272</subfield><subfield code="w">(DE-627)130892815</subfield><subfield code="w">(DE-600)1041378-9</subfield><subfield code="w">(DE-576)026321106</subfield><subfield code="x">0956-5515</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:5</subfield><subfield code="g">day:06</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:2257-2272</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10845-017-1385-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2018</subfield><subfield code="e">5</subfield><subfield code="b">06</subfield><subfield code="c">01</subfield><subfield code="h">2257-2272</subfield></datafield></record></collection>
|
score |
7.4008284 |