The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher
Abstract This study examined human fetal osteoblast (hFOB) cell morphology, adhesion force, and proliferation on a titanium-coated grooved surface. V-shaped grooves with a depth of 2.4 μm (T1) or 4.8 μm (T2) were produced in silicon wafers using photolithography and wet etching techniques. The groov...
Ausführliche Beschreibung
Autor*in: |
Yang, Shih-Ping [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science / Materials in medicine - Springer US, 1990, 22(2011), 4 vom: 18. Feb., Seite 1027-1036 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2011 ; number:4 ; day:18 ; month:02 ; pages:1027-1036 |
Links: |
---|
DOI / URN: |
10.1007/s10856-011-4255-1 |
---|
Katalog-ID: |
OLC2066816981 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2066816981 | ||
003 | DE-627 | ||
005 | 20230516120855.0 | ||
007 | tu | ||
008 | 200819s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10856-011-4255-1 |2 doi | |
035 | |a (DE-627)OLC2066816981 | ||
035 | |a (DE-He213)s10856-011-4255-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |a 670 |q VZ |
100 | 1 | |a Yang, Shih-Ping |e verfasserin |4 aut | |
245 | 1 | 0 | |a The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2011 | ||
520 | |a Abstract This study examined human fetal osteoblast (hFOB) cell morphology, adhesion force, and proliferation on a titanium-coated grooved surface. V-shaped grooves with a depth of 2.4 μm (T1) or 4.8 μm (T2) were produced in silicon wafers using photolithography and wet etching techniques. The grooved substrates were coated with a 200-nm-thick layer of titanium using a sputtering system. Smooth Ti-coated Si wafers were used as control surfaces. Analysis of the scanning electron microscopy observations shows that the cells responded to the micropattern by spreading out and becoming elongated. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay indicated that the grooved specimens had a significantly larger number of cells than did the control group after 5- and 15-day cultures. The cytocompatibility of specimens was quantitatively evaluated by a cytodetacher, which directly measures the detachment shear force of an individual cell to the substrate. After 30-min culture, the cell adhesion forces were 48.4, 136.6, and 103.3 nN for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion strengths were 294, 501, and 590 Pa for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion force and cell adhesion strength indicate the quality of cell adhesion, explaining the largest number of cells on grooved specimens. The experimental results suggest that the grooved patterns affect the cell shape and cytoskeletal structure, and thus influence the cell proliferation and cell adhesion force. The cytodetachment test with nanonewton resolution is a sensitive method for studying cell–biomaterial interaction. | ||
650 | 4 | |a Adhesion Force | |
650 | 4 | |a Smooth Specimen | |
650 | 4 | |a Groove Surface | |
650 | 4 | |a Elongation Index | |
650 | 4 | |a Groove Pattern | |
700 | 1 | |a Lee, Tzer-Min |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science / Materials in medicine |d Springer US, 1990 |g 22(2011), 4 vom: 18. Feb., Seite 1027-1036 |w (DE-627)130865028 |w (DE-600)1031752-1 |w (DE-576)023107537 |x 0957-4530 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2011 |g number:4 |g day:18 |g month:02 |g pages:1027-1036 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10856-011-4255-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 22 |j 2011 |e 4 |b 18 |c 02 |h 1027-1036 |
author_variant |
s p y spy t m l tml |
---|---|
matchkey_str |
article:09574530:2011----::hefcosbtaeoorpynfbeleairniiileldei |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s10856-011-4255-1 doi (DE-627)OLC2066816981 (DE-He213)s10856-011-4255-1-p DE-627 ger DE-627 rakwb eng 610 670 VZ Yang, Shih-Ping verfasserin aut The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract This study examined human fetal osteoblast (hFOB) cell morphology, adhesion force, and proliferation on a titanium-coated grooved surface. V-shaped grooves with a depth of 2.4 μm (T1) or 4.8 μm (T2) were produced in silicon wafers using photolithography and wet etching techniques. The grooved substrates were coated with a 200-nm-thick layer of titanium using a sputtering system. Smooth Ti-coated Si wafers were used as control surfaces. Analysis of the scanning electron microscopy observations shows that the cells responded to the micropattern by spreading out and becoming elongated. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay indicated that the grooved specimens had a significantly larger number of cells than did the control group after 5- and 15-day cultures. The cytocompatibility of specimens was quantitatively evaluated by a cytodetacher, which directly measures the detachment shear force of an individual cell to the substrate. After 30-min culture, the cell adhesion forces were 48.4, 136.6, and 103.3 nN for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion strengths were 294, 501, and 590 Pa for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion force and cell adhesion strength indicate the quality of cell adhesion, explaining the largest number of cells on grooved specimens. The experimental results suggest that the grooved patterns affect the cell shape and cytoskeletal structure, and thus influence the cell proliferation and cell adhesion force. The cytodetachment test with nanonewton resolution is a sensitive method for studying cell–biomaterial interaction. Adhesion Force Smooth Specimen Groove Surface Elongation Index Groove Pattern Lee, Tzer-Min aut Enthalten in Journal of materials science / Materials in medicine Springer US, 1990 22(2011), 4 vom: 18. Feb., Seite 1027-1036 (DE-627)130865028 (DE-600)1031752-1 (DE-576)023107537 0957-4530 nnns volume:22 year:2011 number:4 day:18 month:02 pages:1027-1036 https://doi.org/10.1007/s10856-011-4255-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4305 GBV_ILN_4323 AR 22 2011 4 18 02 1027-1036 |
spelling |
10.1007/s10856-011-4255-1 doi (DE-627)OLC2066816981 (DE-He213)s10856-011-4255-1-p DE-627 ger DE-627 rakwb eng 610 670 VZ Yang, Shih-Ping verfasserin aut The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract This study examined human fetal osteoblast (hFOB) cell morphology, adhesion force, and proliferation on a titanium-coated grooved surface. V-shaped grooves with a depth of 2.4 μm (T1) or 4.8 μm (T2) were produced in silicon wafers using photolithography and wet etching techniques. The grooved substrates were coated with a 200-nm-thick layer of titanium using a sputtering system. Smooth Ti-coated Si wafers were used as control surfaces. Analysis of the scanning electron microscopy observations shows that the cells responded to the micropattern by spreading out and becoming elongated. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay indicated that the grooved specimens had a significantly larger number of cells than did the control group after 5- and 15-day cultures. The cytocompatibility of specimens was quantitatively evaluated by a cytodetacher, which directly measures the detachment shear force of an individual cell to the substrate. After 30-min culture, the cell adhesion forces were 48.4, 136.6, and 103.3 nN for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion strengths were 294, 501, and 590 Pa for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion force and cell adhesion strength indicate the quality of cell adhesion, explaining the largest number of cells on grooved specimens. The experimental results suggest that the grooved patterns affect the cell shape and cytoskeletal structure, and thus influence the cell proliferation and cell adhesion force. The cytodetachment test with nanonewton resolution is a sensitive method for studying cell–biomaterial interaction. Adhesion Force Smooth Specimen Groove Surface Elongation Index Groove Pattern Lee, Tzer-Min aut Enthalten in Journal of materials science / Materials in medicine Springer US, 1990 22(2011), 4 vom: 18. Feb., Seite 1027-1036 (DE-627)130865028 (DE-600)1031752-1 (DE-576)023107537 0957-4530 nnns volume:22 year:2011 number:4 day:18 month:02 pages:1027-1036 https://doi.org/10.1007/s10856-011-4255-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4305 GBV_ILN_4323 AR 22 2011 4 18 02 1027-1036 |
allfields_unstemmed |
10.1007/s10856-011-4255-1 doi (DE-627)OLC2066816981 (DE-He213)s10856-011-4255-1-p DE-627 ger DE-627 rakwb eng 610 670 VZ Yang, Shih-Ping verfasserin aut The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract This study examined human fetal osteoblast (hFOB) cell morphology, adhesion force, and proliferation on a titanium-coated grooved surface. V-shaped grooves with a depth of 2.4 μm (T1) or 4.8 μm (T2) were produced in silicon wafers using photolithography and wet etching techniques. The grooved substrates were coated with a 200-nm-thick layer of titanium using a sputtering system. Smooth Ti-coated Si wafers were used as control surfaces. Analysis of the scanning electron microscopy observations shows that the cells responded to the micropattern by spreading out and becoming elongated. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay indicated that the grooved specimens had a significantly larger number of cells than did the control group after 5- and 15-day cultures. The cytocompatibility of specimens was quantitatively evaluated by a cytodetacher, which directly measures the detachment shear force of an individual cell to the substrate. After 30-min culture, the cell adhesion forces were 48.4, 136.6, and 103.3 nN for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion strengths were 294, 501, and 590 Pa for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion force and cell adhesion strength indicate the quality of cell adhesion, explaining the largest number of cells on grooved specimens. The experimental results suggest that the grooved patterns affect the cell shape and cytoskeletal structure, and thus influence the cell proliferation and cell adhesion force. The cytodetachment test with nanonewton resolution is a sensitive method for studying cell–biomaterial interaction. Adhesion Force Smooth Specimen Groove Surface Elongation Index Groove Pattern Lee, Tzer-Min aut Enthalten in Journal of materials science / Materials in medicine Springer US, 1990 22(2011), 4 vom: 18. Feb., Seite 1027-1036 (DE-627)130865028 (DE-600)1031752-1 (DE-576)023107537 0957-4530 nnns volume:22 year:2011 number:4 day:18 month:02 pages:1027-1036 https://doi.org/10.1007/s10856-011-4255-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4305 GBV_ILN_4323 AR 22 2011 4 18 02 1027-1036 |
allfieldsGer |
10.1007/s10856-011-4255-1 doi (DE-627)OLC2066816981 (DE-He213)s10856-011-4255-1-p DE-627 ger DE-627 rakwb eng 610 670 VZ Yang, Shih-Ping verfasserin aut The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract This study examined human fetal osteoblast (hFOB) cell morphology, adhesion force, and proliferation on a titanium-coated grooved surface. V-shaped grooves with a depth of 2.4 μm (T1) or 4.8 μm (T2) were produced in silicon wafers using photolithography and wet etching techniques. The grooved substrates were coated with a 200-nm-thick layer of titanium using a sputtering system. Smooth Ti-coated Si wafers were used as control surfaces. Analysis of the scanning electron microscopy observations shows that the cells responded to the micropattern by spreading out and becoming elongated. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay indicated that the grooved specimens had a significantly larger number of cells than did the control group after 5- and 15-day cultures. The cytocompatibility of specimens was quantitatively evaluated by a cytodetacher, which directly measures the detachment shear force of an individual cell to the substrate. After 30-min culture, the cell adhesion forces were 48.4, 136.6, and 103.3 nN for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion strengths were 294, 501, and 590 Pa for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion force and cell adhesion strength indicate the quality of cell adhesion, explaining the largest number of cells on grooved specimens. The experimental results suggest that the grooved patterns affect the cell shape and cytoskeletal structure, and thus influence the cell proliferation and cell adhesion force. The cytodetachment test with nanonewton resolution is a sensitive method for studying cell–biomaterial interaction. Adhesion Force Smooth Specimen Groove Surface Elongation Index Groove Pattern Lee, Tzer-Min aut Enthalten in Journal of materials science / Materials in medicine Springer US, 1990 22(2011), 4 vom: 18. Feb., Seite 1027-1036 (DE-627)130865028 (DE-600)1031752-1 (DE-576)023107537 0957-4530 nnns volume:22 year:2011 number:4 day:18 month:02 pages:1027-1036 https://doi.org/10.1007/s10856-011-4255-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4305 GBV_ILN_4323 AR 22 2011 4 18 02 1027-1036 |
allfieldsSound |
10.1007/s10856-011-4255-1 doi (DE-627)OLC2066816981 (DE-He213)s10856-011-4255-1-p DE-627 ger DE-627 rakwb eng 610 670 VZ Yang, Shih-Ping verfasserin aut The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract This study examined human fetal osteoblast (hFOB) cell morphology, adhesion force, and proliferation on a titanium-coated grooved surface. V-shaped grooves with a depth of 2.4 μm (T1) or 4.8 μm (T2) were produced in silicon wafers using photolithography and wet etching techniques. The grooved substrates were coated with a 200-nm-thick layer of titanium using a sputtering system. Smooth Ti-coated Si wafers were used as control surfaces. Analysis of the scanning electron microscopy observations shows that the cells responded to the micropattern by spreading out and becoming elongated. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay indicated that the grooved specimens had a significantly larger number of cells than did the control group after 5- and 15-day cultures. The cytocompatibility of specimens was quantitatively evaluated by a cytodetacher, which directly measures the detachment shear force of an individual cell to the substrate. After 30-min culture, the cell adhesion forces were 48.4, 136.6, and 103.3 nN for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion strengths were 294, 501, and 590 Pa for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion force and cell adhesion strength indicate the quality of cell adhesion, explaining the largest number of cells on grooved specimens. The experimental results suggest that the grooved patterns affect the cell shape and cytoskeletal structure, and thus influence the cell proliferation and cell adhesion force. The cytodetachment test with nanonewton resolution is a sensitive method for studying cell–biomaterial interaction. Adhesion Force Smooth Specimen Groove Surface Elongation Index Groove Pattern Lee, Tzer-Min aut Enthalten in Journal of materials science / Materials in medicine Springer US, 1990 22(2011), 4 vom: 18. Feb., Seite 1027-1036 (DE-627)130865028 (DE-600)1031752-1 (DE-576)023107537 0957-4530 nnns volume:22 year:2011 number:4 day:18 month:02 pages:1027-1036 https://doi.org/10.1007/s10856-011-4255-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4305 GBV_ILN_4323 AR 22 2011 4 18 02 1027-1036 |
language |
English |
source |
Enthalten in Journal of materials science / Materials in medicine 22(2011), 4 vom: 18. Feb., Seite 1027-1036 volume:22 year:2011 number:4 day:18 month:02 pages:1027-1036 |
sourceStr |
Enthalten in Journal of materials science / Materials in medicine 22(2011), 4 vom: 18. Feb., Seite 1027-1036 volume:22 year:2011 number:4 day:18 month:02 pages:1027-1036 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Adhesion Force Smooth Specimen Groove Surface Elongation Index Groove Pattern |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science / Materials in medicine |
authorswithroles_txt_mv |
Yang, Shih-Ping @@aut@@ Lee, Tzer-Min @@aut@@ |
publishDateDaySort_date |
2011-02-18T00:00:00Z |
hierarchy_top_id |
130865028 |
dewey-sort |
3610 |
id |
OLC2066816981 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2066816981</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230516120855.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10856-011-4255-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2066816981</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10856-011-4255-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Shih-Ping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study examined human fetal osteoblast (hFOB) cell morphology, adhesion force, and proliferation on a titanium-coated grooved surface. V-shaped grooves with a depth of 2.4 μm (T1) or 4.8 μm (T2) were produced in silicon wafers using photolithography and wet etching techniques. The grooved substrates were coated with a 200-nm-thick layer of titanium using a sputtering system. Smooth Ti-coated Si wafers were used as control surfaces. Analysis of the scanning electron microscopy observations shows that the cells responded to the micropattern by spreading out and becoming elongated. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay indicated that the grooved specimens had a significantly larger number of cells than did the control group after 5- and 15-day cultures. The cytocompatibility of specimens was quantitatively evaluated by a cytodetacher, which directly measures the detachment shear force of an individual cell to the substrate. After 30-min culture, the cell adhesion forces were 48.4, 136.6, and 103.3 nN for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion strengths were 294, 501, and 590 Pa for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion force and cell adhesion strength indicate the quality of cell adhesion, explaining the largest number of cells on grooved specimens. The experimental results suggest that the grooved patterns affect the cell shape and cytoskeletal structure, and thus influence the cell proliferation and cell adhesion force. The cytodetachment test with nanonewton resolution is a sensitive method for studying cell–biomaterial interaction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adhesion Force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smooth Specimen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groove Surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elongation Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groove Pattern</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Tzer-Min</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science / Materials in medicine</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">22(2011), 4 vom: 18. Feb., Seite 1027-1036</subfield><subfield code="w">(DE-627)130865028</subfield><subfield code="w">(DE-600)1031752-1</subfield><subfield code="w">(DE-576)023107537</subfield><subfield code="x">0957-4530</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">day:18</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1027-1036</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10856-011-4255-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="b">18</subfield><subfield code="c">02</subfield><subfield code="h">1027-1036</subfield></datafield></record></collection>
|
author |
Yang, Shih-Ping |
spellingShingle |
Yang, Shih-Ping ddc 610 misc Adhesion Force misc Smooth Specimen misc Groove Surface misc Elongation Index misc Groove Pattern The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher |
authorStr |
Yang, Shih-Ping |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130865028 |
format |
Article |
dewey-ones |
610 - Medicine & health 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0957-4530 |
topic_title |
610 670 VZ The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher Adhesion Force Smooth Specimen Groove Surface Elongation Index Groove Pattern |
topic |
ddc 610 misc Adhesion Force misc Smooth Specimen misc Groove Surface misc Elongation Index misc Groove Pattern |
topic_unstemmed |
ddc 610 misc Adhesion Force misc Smooth Specimen misc Groove Surface misc Elongation Index misc Groove Pattern |
topic_browse |
ddc 610 misc Adhesion Force misc Smooth Specimen misc Groove Surface misc Elongation Index misc Groove Pattern |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science / Materials in medicine |
hierarchy_parent_id |
130865028 |
dewey-tens |
610 - Medicine & health 670 - Manufacturing |
hierarchy_top_title |
Journal of materials science / Materials in medicine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130865028 (DE-600)1031752-1 (DE-576)023107537 |
title |
The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher |
ctrlnum |
(DE-627)OLC2066816981 (DE-He213)s10856-011-4255-1-p |
title_full |
The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher |
author_sort |
Yang, Shih-Ping |
journal |
Journal of materials science / Materials in medicine |
journalStr |
Journal of materials science / Materials in medicine |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
1027 |
author_browse |
Yang, Shih-Ping Lee, Tzer-Min |
container_volume |
22 |
class |
610 670 VZ |
format_se |
Aufsätze |
author-letter |
Yang, Shih-Ping |
doi_str_mv |
10.1007/s10856-011-4255-1 |
dewey-full |
610 670 |
title_sort |
the effect of substrate topography on hfob cell behavior and initial cell adhesion evaluated by a cytodetacher |
title_auth |
The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher |
abstract |
Abstract This study examined human fetal osteoblast (hFOB) cell morphology, adhesion force, and proliferation on a titanium-coated grooved surface. V-shaped grooves with a depth of 2.4 μm (T1) or 4.8 μm (T2) were produced in silicon wafers using photolithography and wet etching techniques. The grooved substrates were coated with a 200-nm-thick layer of titanium using a sputtering system. Smooth Ti-coated Si wafers were used as control surfaces. Analysis of the scanning electron microscopy observations shows that the cells responded to the micropattern by spreading out and becoming elongated. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay indicated that the grooved specimens had a significantly larger number of cells than did the control group after 5- and 15-day cultures. The cytocompatibility of specimens was quantitatively evaluated by a cytodetacher, which directly measures the detachment shear force of an individual cell to the substrate. After 30-min culture, the cell adhesion forces were 48.4, 136.6, and 103.3 nN for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion strengths were 294, 501, and 590 Pa for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion force and cell adhesion strength indicate the quality of cell adhesion, explaining the largest number of cells on grooved specimens. The experimental results suggest that the grooved patterns affect the cell shape and cytoskeletal structure, and thus influence the cell proliferation and cell adhesion force. The cytodetachment test with nanonewton resolution is a sensitive method for studying cell–biomaterial interaction. © Springer Science+Business Media, LLC 2011 |
abstractGer |
Abstract This study examined human fetal osteoblast (hFOB) cell morphology, adhesion force, and proliferation on a titanium-coated grooved surface. V-shaped grooves with a depth of 2.4 μm (T1) or 4.8 μm (T2) were produced in silicon wafers using photolithography and wet etching techniques. The grooved substrates were coated with a 200-nm-thick layer of titanium using a sputtering system. Smooth Ti-coated Si wafers were used as control surfaces. Analysis of the scanning electron microscopy observations shows that the cells responded to the micropattern by spreading out and becoming elongated. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay indicated that the grooved specimens had a significantly larger number of cells than did the control group after 5- and 15-day cultures. The cytocompatibility of specimens was quantitatively evaluated by a cytodetacher, which directly measures the detachment shear force of an individual cell to the substrate. After 30-min culture, the cell adhesion forces were 48.4, 136.6, and 103.3 nN for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion strengths were 294, 501, and 590 Pa for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion force and cell adhesion strength indicate the quality of cell adhesion, explaining the largest number of cells on grooved specimens. The experimental results suggest that the grooved patterns affect the cell shape and cytoskeletal structure, and thus influence the cell proliferation and cell adhesion force. The cytodetachment test with nanonewton resolution is a sensitive method for studying cell–biomaterial interaction. © Springer Science+Business Media, LLC 2011 |
abstract_unstemmed |
Abstract This study examined human fetal osteoblast (hFOB) cell morphology, adhesion force, and proliferation on a titanium-coated grooved surface. V-shaped grooves with a depth of 2.4 μm (T1) or 4.8 μm (T2) were produced in silicon wafers using photolithography and wet etching techniques. The grooved substrates were coated with a 200-nm-thick layer of titanium using a sputtering system. Smooth Ti-coated Si wafers were used as control surfaces. Analysis of the scanning electron microscopy observations shows that the cells responded to the micropattern by spreading out and becoming elongated. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay indicated that the grooved specimens had a significantly larger number of cells than did the control group after 5- and 15-day cultures. The cytocompatibility of specimens was quantitatively evaluated by a cytodetacher, which directly measures the detachment shear force of an individual cell to the substrate. After 30-min culture, the cell adhesion forces were 48.4, 136.6, and 103.3 nN for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion strengths were 294, 501, and 590 Pa for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion force and cell adhesion strength indicate the quality of cell adhesion, explaining the largest number of cells on grooved specimens. The experimental results suggest that the grooved patterns affect the cell shape and cytoskeletal structure, and thus influence the cell proliferation and cell adhesion force. The cytodetachment test with nanonewton resolution is a sensitive method for studying cell–biomaterial interaction. © Springer Science+Business Media, LLC 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
4 |
title_short |
The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher |
url |
https://doi.org/10.1007/s10856-011-4255-1 |
remote_bool |
false |
author2 |
Lee, Tzer-Min |
author2Str |
Lee, Tzer-Min |
ppnlink |
130865028 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10856-011-4255-1 |
up_date |
2024-07-04T05:23:18.109Z |
_version_ |
1803624747476451328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2066816981</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230516120855.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10856-011-4255-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2066816981</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10856-011-4255-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Shih-Ping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study examined human fetal osteoblast (hFOB) cell morphology, adhesion force, and proliferation on a titanium-coated grooved surface. V-shaped grooves with a depth of 2.4 μm (T1) or 4.8 μm (T2) were produced in silicon wafers using photolithography and wet etching techniques. The grooved substrates were coated with a 200-nm-thick layer of titanium using a sputtering system. Smooth Ti-coated Si wafers were used as control surfaces. Analysis of the scanning electron microscopy observations shows that the cells responded to the micropattern by spreading out and becoming elongated. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay indicated that the grooved specimens had a significantly larger number of cells than did the control group after 5- and 15-day cultures. The cytocompatibility of specimens was quantitatively evaluated by a cytodetacher, which directly measures the detachment shear force of an individual cell to the substrate. After 30-min culture, the cell adhesion forces were 48.4, 136.6, and 103.3 nN for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion strengths were 294, 501, and 590 Pa for the smooth specimen, the T1 specimen, and the T2 specimen, respectively. The cell adhesion force and cell adhesion strength indicate the quality of cell adhesion, explaining the largest number of cells on grooved specimens. The experimental results suggest that the grooved patterns affect the cell shape and cytoskeletal structure, and thus influence the cell proliferation and cell adhesion force. The cytodetachment test with nanonewton resolution is a sensitive method for studying cell–biomaterial interaction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adhesion Force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smooth Specimen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groove Surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elongation Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groove Pattern</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Tzer-Min</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science / Materials in medicine</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">22(2011), 4 vom: 18. Feb., Seite 1027-1036</subfield><subfield code="w">(DE-627)130865028</subfield><subfield code="w">(DE-600)1031752-1</subfield><subfield code="w">(DE-576)023107537</subfield><subfield code="x">0957-4530</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">day:18</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1027-1036</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10856-011-4255-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="b">18</subfield><subfield code="c">02</subfield><subfield code="h">1027-1036</subfield></datafield></record></collection>
|
score |
7.400283 |