Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing
Abstract The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(dl-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The mi...
Ausführliche Beschreibung
Autor*in: |
Dhillon, A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science / Materials in medicine - Springer US, 1990, 22(2011), 12 vom: 10. Sept., Seite 2599-2605 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2011 ; number:12 ; day:10 ; month:09 ; pages:2599-2605 |
Links: |
---|
DOI / URN: |
10.1007/s10856-011-4443-z |
---|
Katalog-ID: |
OLC2066818216 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2066818216 | ||
003 | DE-627 | ||
005 | 20230516120858.0 | ||
007 | tu | ||
008 | 200819s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10856-011-4443-z |2 doi | |
035 | |a (DE-627)OLC2066818216 | ||
035 | |a (DE-He213)s10856-011-4443-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |a 670 |q VZ |
100 | 1 | |a Dhillon, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2011 | ||
520 | |a Abstract The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(dl-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure–function relationships in scaffolds for bone tissue engineering applications. | ||
650 | 4 | |a Compressive Strength | |
650 | 4 | |a Trabecular Bone | |
650 | 4 | |a High Strain Rate | |
650 | 4 | |a Compressive Strain | |
650 | 4 | |a Bone Tissue Engineering | |
700 | 1 | |a Schneider, P. |4 aut | |
700 | 1 | |a Kuhn, G. |4 aut | |
700 | 1 | |a Reinwald, Y. |4 aut | |
700 | 1 | |a White, L. J. |4 aut | |
700 | 1 | |a Levchuk, A. |4 aut | |
700 | 1 | |a Rose, F. R. A. J. |4 aut | |
700 | 1 | |a Müller, R. |4 aut | |
700 | 1 | |a Shakesheff, K. M. |4 aut | |
700 | 1 | |a Rahman, C. V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science / Materials in medicine |d Springer US, 1990 |g 22(2011), 12 vom: 10. Sept., Seite 2599-2605 |w (DE-627)130865028 |w (DE-600)1031752-1 |w (DE-576)023107537 |x 0957-4530 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2011 |g number:12 |g day:10 |g month:09 |g pages:2599-2605 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10856-011-4443-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 22 |j 2011 |e 12 |b 10 |c 09 |h 2599-2605 |
author_variant |
a d ad p s ps g k gk y r yr l j w lj ljw a l al f r a j r fraj frajr r m rm k m s km kms c v r cv cvr |
---|---|
matchkey_str |
article:09574530:2011----::nlssfitrdoyesaflssncnoiatycrtocmuetmgah |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s10856-011-4443-z doi (DE-627)OLC2066818216 (DE-He213)s10856-011-4443-z-p DE-627 ger DE-627 rakwb eng 610 670 VZ Dhillon, A. verfasserin aut Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(dl-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure–function relationships in scaffolds for bone tissue engineering applications. Compressive Strength Trabecular Bone High Strain Rate Compressive Strain Bone Tissue Engineering Schneider, P. aut Kuhn, G. aut Reinwald, Y. aut White, L. J. aut Levchuk, A. aut Rose, F. R. A. J. aut Müller, R. aut Shakesheff, K. M. aut Rahman, C. V. aut Enthalten in Journal of materials science / Materials in medicine Springer US, 1990 22(2011), 12 vom: 10. Sept., Seite 2599-2605 (DE-627)130865028 (DE-600)1031752-1 (DE-576)023107537 0957-4530 nnns volume:22 year:2011 number:12 day:10 month:09 pages:2599-2605 https://doi.org/10.1007/s10856-011-4443-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4305 GBV_ILN_4323 AR 22 2011 12 10 09 2599-2605 |
spelling |
10.1007/s10856-011-4443-z doi (DE-627)OLC2066818216 (DE-He213)s10856-011-4443-z-p DE-627 ger DE-627 rakwb eng 610 670 VZ Dhillon, A. verfasserin aut Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(dl-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure–function relationships in scaffolds for bone tissue engineering applications. Compressive Strength Trabecular Bone High Strain Rate Compressive Strain Bone Tissue Engineering Schneider, P. aut Kuhn, G. aut Reinwald, Y. aut White, L. J. aut Levchuk, A. aut Rose, F. R. A. J. aut Müller, R. aut Shakesheff, K. M. aut Rahman, C. V. aut Enthalten in Journal of materials science / Materials in medicine Springer US, 1990 22(2011), 12 vom: 10. Sept., Seite 2599-2605 (DE-627)130865028 (DE-600)1031752-1 (DE-576)023107537 0957-4530 nnns volume:22 year:2011 number:12 day:10 month:09 pages:2599-2605 https://doi.org/10.1007/s10856-011-4443-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4305 GBV_ILN_4323 AR 22 2011 12 10 09 2599-2605 |
allfields_unstemmed |
10.1007/s10856-011-4443-z doi (DE-627)OLC2066818216 (DE-He213)s10856-011-4443-z-p DE-627 ger DE-627 rakwb eng 610 670 VZ Dhillon, A. verfasserin aut Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(dl-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure–function relationships in scaffolds for bone tissue engineering applications. Compressive Strength Trabecular Bone High Strain Rate Compressive Strain Bone Tissue Engineering Schneider, P. aut Kuhn, G. aut Reinwald, Y. aut White, L. J. aut Levchuk, A. aut Rose, F. R. A. J. aut Müller, R. aut Shakesheff, K. M. aut Rahman, C. V. aut Enthalten in Journal of materials science / Materials in medicine Springer US, 1990 22(2011), 12 vom: 10. Sept., Seite 2599-2605 (DE-627)130865028 (DE-600)1031752-1 (DE-576)023107537 0957-4530 nnns volume:22 year:2011 number:12 day:10 month:09 pages:2599-2605 https://doi.org/10.1007/s10856-011-4443-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4305 GBV_ILN_4323 AR 22 2011 12 10 09 2599-2605 |
allfieldsGer |
10.1007/s10856-011-4443-z doi (DE-627)OLC2066818216 (DE-He213)s10856-011-4443-z-p DE-627 ger DE-627 rakwb eng 610 670 VZ Dhillon, A. verfasserin aut Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(dl-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure–function relationships in scaffolds for bone tissue engineering applications. Compressive Strength Trabecular Bone High Strain Rate Compressive Strain Bone Tissue Engineering Schneider, P. aut Kuhn, G. aut Reinwald, Y. aut White, L. J. aut Levchuk, A. aut Rose, F. R. A. J. aut Müller, R. aut Shakesheff, K. M. aut Rahman, C. V. aut Enthalten in Journal of materials science / Materials in medicine Springer US, 1990 22(2011), 12 vom: 10. Sept., Seite 2599-2605 (DE-627)130865028 (DE-600)1031752-1 (DE-576)023107537 0957-4530 nnns volume:22 year:2011 number:12 day:10 month:09 pages:2599-2605 https://doi.org/10.1007/s10856-011-4443-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4305 GBV_ILN_4323 AR 22 2011 12 10 09 2599-2605 |
allfieldsSound |
10.1007/s10856-011-4443-z doi (DE-627)OLC2066818216 (DE-He213)s10856-011-4443-z-p DE-627 ger DE-627 rakwb eng 610 670 VZ Dhillon, A. verfasserin aut Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(dl-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure–function relationships in scaffolds for bone tissue engineering applications. Compressive Strength Trabecular Bone High Strain Rate Compressive Strain Bone Tissue Engineering Schneider, P. aut Kuhn, G. aut Reinwald, Y. aut White, L. J. aut Levchuk, A. aut Rose, F. R. A. J. aut Müller, R. aut Shakesheff, K. M. aut Rahman, C. V. aut Enthalten in Journal of materials science / Materials in medicine Springer US, 1990 22(2011), 12 vom: 10. Sept., Seite 2599-2605 (DE-627)130865028 (DE-600)1031752-1 (DE-576)023107537 0957-4530 nnns volume:22 year:2011 number:12 day:10 month:09 pages:2599-2605 https://doi.org/10.1007/s10856-011-4443-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4305 GBV_ILN_4323 AR 22 2011 12 10 09 2599-2605 |
language |
English |
source |
Enthalten in Journal of materials science / Materials in medicine 22(2011), 12 vom: 10. Sept., Seite 2599-2605 volume:22 year:2011 number:12 day:10 month:09 pages:2599-2605 |
sourceStr |
Enthalten in Journal of materials science / Materials in medicine 22(2011), 12 vom: 10. Sept., Seite 2599-2605 volume:22 year:2011 number:12 day:10 month:09 pages:2599-2605 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Compressive Strength Trabecular Bone High Strain Rate Compressive Strain Bone Tissue Engineering |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science / Materials in medicine |
authorswithroles_txt_mv |
Dhillon, A. @@aut@@ Schneider, P. @@aut@@ Kuhn, G. @@aut@@ Reinwald, Y. @@aut@@ White, L. J. @@aut@@ Levchuk, A. @@aut@@ Rose, F. R. A. J. @@aut@@ Müller, R. @@aut@@ Shakesheff, K. M. @@aut@@ Rahman, C. V. @@aut@@ |
publishDateDaySort_date |
2011-09-10T00:00:00Z |
hierarchy_top_id |
130865028 |
dewey-sort |
3610 |
id |
OLC2066818216 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2066818216</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230516120858.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10856-011-4443-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2066818216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10856-011-4443-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dhillon, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(dl-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure–function relationships in scaffolds for bone tissue engineering applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compressive Strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trabecular Bone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Strain Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compressive Strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bone Tissue Engineering</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schneider, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuhn, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reinwald, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">White, L. J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Levchuk, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rose, F. R. A. J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Müller, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shakesheff, K. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rahman, C. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science / Materials in medicine</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">22(2011), 12 vom: 10. Sept., Seite 2599-2605</subfield><subfield code="w">(DE-627)130865028</subfield><subfield code="w">(DE-600)1031752-1</subfield><subfield code="w">(DE-576)023107537</subfield><subfield code="x">0957-4530</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:12</subfield><subfield code="g">day:10</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:2599-2605</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10856-011-4443-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2011</subfield><subfield code="e">12</subfield><subfield code="b">10</subfield><subfield code="c">09</subfield><subfield code="h">2599-2605</subfield></datafield></record></collection>
|
author |
Dhillon, A. |
spellingShingle |
Dhillon, A. ddc 610 misc Compressive Strength misc Trabecular Bone misc High Strain Rate misc Compressive Strain misc Bone Tissue Engineering Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing |
authorStr |
Dhillon, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130865028 |
format |
Article |
dewey-ones |
610 - Medicine & health 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0957-4530 |
topic_title |
610 670 VZ Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing Compressive Strength Trabecular Bone High Strain Rate Compressive Strain Bone Tissue Engineering |
topic |
ddc 610 misc Compressive Strength misc Trabecular Bone misc High Strain Rate misc Compressive Strain misc Bone Tissue Engineering |
topic_unstemmed |
ddc 610 misc Compressive Strength misc Trabecular Bone misc High Strain Rate misc Compressive Strain misc Bone Tissue Engineering |
topic_browse |
ddc 610 misc Compressive Strength misc Trabecular Bone misc High Strain Rate misc Compressive Strain misc Bone Tissue Engineering |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science / Materials in medicine |
hierarchy_parent_id |
130865028 |
dewey-tens |
610 - Medicine & health 670 - Manufacturing |
hierarchy_top_title |
Journal of materials science / Materials in medicine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130865028 (DE-600)1031752-1 (DE-576)023107537 |
title |
Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing |
ctrlnum |
(DE-627)OLC2066818216 (DE-He213)s10856-011-4443-z-p |
title_full |
Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing |
author_sort |
Dhillon, A. |
journal |
Journal of materials science / Materials in medicine |
journalStr |
Journal of materials science / Materials in medicine |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
2599 |
author_browse |
Dhillon, A. Schneider, P. Kuhn, G. Reinwald, Y. White, L. J. Levchuk, A. Rose, F. R. A. J. Müller, R. Shakesheff, K. M. Rahman, C. V. |
container_volume |
22 |
class |
610 670 VZ |
format_se |
Aufsätze |
author-letter |
Dhillon, A. |
doi_str_mv |
10.1007/s10856-011-4443-z |
dewey-full |
610 670 |
title_sort |
analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing |
title_auth |
Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing |
abstract |
Abstract The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(dl-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure–function relationships in scaffolds for bone tissue engineering applications. © Springer Science+Business Media, LLC 2011 |
abstractGer |
Abstract The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(dl-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure–function relationships in scaffolds for bone tissue engineering applications. © Springer Science+Business Media, LLC 2011 |
abstract_unstemmed |
Abstract The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(dl-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure–function relationships in scaffolds for bone tissue engineering applications. © Springer Science+Business Media, LLC 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
12 |
title_short |
Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing |
url |
https://doi.org/10.1007/s10856-011-4443-z |
remote_bool |
false |
author2 |
Schneider, P. Kuhn, G. Reinwald, Y. White, L. J. Levchuk, A. Rose, F. R. A. J. Müller, R. Shakesheff, K. M. Rahman, C. V. |
author2Str |
Schneider, P. Kuhn, G. Reinwald, Y. White, L. J. Levchuk, A. Rose, F. R. A. J. Müller, R. Shakesheff, K. M. Rahman, C. V. |
ppnlink |
130865028 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10856-011-4443-z |
up_date |
2024-07-04T05:23:31.752Z |
_version_ |
1803624761777979392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2066818216</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230516120858.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10856-011-4443-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2066818216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10856-011-4443-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dhillon, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(dl-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure–function relationships in scaffolds for bone tissue engineering applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compressive Strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trabecular Bone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Strain Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compressive Strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bone Tissue Engineering</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schneider, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuhn, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reinwald, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">White, L. J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Levchuk, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rose, F. R. A. J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Müller, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shakesheff, K. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rahman, C. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science / Materials in medicine</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">22(2011), 12 vom: 10. Sept., Seite 2599-2605</subfield><subfield code="w">(DE-627)130865028</subfield><subfield code="w">(DE-600)1031752-1</subfield><subfield code="w">(DE-576)023107537</subfield><subfield code="x">0957-4530</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:12</subfield><subfield code="g">day:10</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:2599-2605</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10856-011-4443-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2011</subfield><subfield code="e">12</subfield><subfield code="b">10</subfield><subfield code="c">09</subfield><subfield code="h">2599-2605</subfield></datafield></record></collection>
|
score |
7.4019604 |