Titin/connectin-based modulation of the Frank-Starling mechanism of the heart
Abstract The basis of the Frank-Starling mechanism of the heart is the increase in active force when muscle is stretched. Various findings have shown that muscle length, i.e., sarcomere length (SL), modulates activation of cardiac myofilaments at a given concentration of $ Ca^{2+} $ ([$ Ca^{2+} $])....
Ausführliche Beschreibung
Autor*in: |
Fukuda, Norio [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, Inc. 2006 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of muscle research and cell motility - Kluwer Academic Publishers, 1980, 26(2005), 6-8 vom: Dez., Seite 319-323 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2005 ; number:6-8 ; month:12 ; pages:319-323 |
Links: |
---|
DOI / URN: |
10.1007/s10974-005-9038-1 |
---|
Katalog-ID: |
OLC2067126938 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2067126938 | ||
003 | DE-627 | ||
005 | 20230503170633.0 | ||
007 | tu | ||
008 | 200820s2005 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10974-005-9038-1 |2 doi | |
035 | |a (DE-627)OLC2067126938 | ||
035 | |a (DE-He213)s10974-005-9038-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 590 |a 570 |q VZ |
084 | |a 12 |2 ssgn | ||
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Fukuda, Norio |e verfasserin |4 aut | |
245 | 1 | 0 | |a Titin/connectin-based modulation of the Frank-Starling mechanism of the heart |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, Inc. 2006 | ||
520 | |a Abstract The basis of the Frank-Starling mechanism of the heart is the increase in active force when muscle is stretched. Various findings have shown that muscle length, i.e., sarcomere length (SL), modulates activation of cardiac myofilaments at a given concentration of $ Ca^{2+} $ ([$ Ca^{2+} $]). This augmented $ Ca^{2+} $ activation with SL, commonly known as “length-dependent activation”, is manifested as the leftward shift of the force-pCa (=−log [$ Ca^{2+} $]) relation as well as by the increase in maximal $ Ca^{2+} $-activated force. Despite the numerous studies that have been undertaken, the molecular mechanism(s) of length-dependent activation is (are) still not fully understood. The giant sarcomere protein titin/connectin is the largest protein known to date. Titin/connectin is responsible for most passive force in vertebrate striated muscle and also functions as a molecular scaffold during myofibrillogenesis. Recent studies suggest that titin/connectin plays an important role in length-dependent activation by sensing stretch and promoting actomyosin interaction. Here we review and extend this previous work and focus on the mechanism by which titin/connectin might modulate actomyosin interaction. | ||
650 | 4 | |a Lattice Spacing | |
650 | 4 | |a Muscle Length | |
650 | 4 | |a Sarcomere Length | |
650 | 4 | |a Passive Force | |
650 | 4 | |a Length Dependence | |
700 | 1 | |a Granzier, Henk L. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of muscle research and cell motility |d Kluwer Academic Publishers, 1980 |g 26(2005), 6-8 vom: Dez., Seite 319-323 |w (DE-627)166717754 |w (DE-600)283053-X |w (DE-576)015170152 |x 0142-4319 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2005 |g number:6-8 |g month:12 |g pages:319-323 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10974-005-9038-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2221 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4219 | ||
951 | |a AR | ||
952 | |d 26 |j 2005 |e 6-8 |c 12 |h 319-323 |
author_variant |
n f nf h l g hl hlg |
---|---|
matchkey_str |
article:01424319:2005----::iicnetnaemdltooternsalnm |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1007/s10974-005-9038-1 doi (DE-627)OLC2067126938 (DE-He213)s10974-005-9038-1-p DE-627 ger DE-627 rakwb eng 590 570 VZ 12 ssgn BIODIV DE-30 fid Fukuda, Norio verfasserin aut Titin/connectin-based modulation of the Frank-Starling mechanism of the heart 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2006 Abstract The basis of the Frank-Starling mechanism of the heart is the increase in active force when muscle is stretched. Various findings have shown that muscle length, i.e., sarcomere length (SL), modulates activation of cardiac myofilaments at a given concentration of $ Ca^{2+} $ ([$ Ca^{2+} $]). This augmented $ Ca^{2+} $ activation with SL, commonly known as “length-dependent activation”, is manifested as the leftward shift of the force-pCa (=−log [$ Ca^{2+} $]) relation as well as by the increase in maximal $ Ca^{2+} $-activated force. Despite the numerous studies that have been undertaken, the molecular mechanism(s) of length-dependent activation is (are) still not fully understood. The giant sarcomere protein titin/connectin is the largest protein known to date. Titin/connectin is responsible for most passive force in vertebrate striated muscle and also functions as a molecular scaffold during myofibrillogenesis. Recent studies suggest that titin/connectin plays an important role in length-dependent activation by sensing stretch and promoting actomyosin interaction. Here we review and extend this previous work and focus on the mechanism by which titin/connectin might modulate actomyosin interaction. Lattice Spacing Muscle Length Sarcomere Length Passive Force Length Dependence Granzier, Henk L. aut Enthalten in Journal of muscle research and cell motility Kluwer Academic Publishers, 1980 26(2005), 6-8 vom: Dez., Seite 319-323 (DE-627)166717754 (DE-600)283053-X (DE-576)015170152 0142-4319 nnns volume:26 year:2005 number:6-8 month:12 pages:319-323 https://doi.org/10.1007/s10974-005-9038-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-WIW GBV_ILN_2007 GBV_ILN_2221 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4219 AR 26 2005 6-8 12 319-323 |
spelling |
10.1007/s10974-005-9038-1 doi (DE-627)OLC2067126938 (DE-He213)s10974-005-9038-1-p DE-627 ger DE-627 rakwb eng 590 570 VZ 12 ssgn BIODIV DE-30 fid Fukuda, Norio verfasserin aut Titin/connectin-based modulation of the Frank-Starling mechanism of the heart 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2006 Abstract The basis of the Frank-Starling mechanism of the heart is the increase in active force when muscle is stretched. Various findings have shown that muscle length, i.e., sarcomere length (SL), modulates activation of cardiac myofilaments at a given concentration of $ Ca^{2+} $ ([$ Ca^{2+} $]). This augmented $ Ca^{2+} $ activation with SL, commonly known as “length-dependent activation”, is manifested as the leftward shift of the force-pCa (=−log [$ Ca^{2+} $]) relation as well as by the increase in maximal $ Ca^{2+} $-activated force. Despite the numerous studies that have been undertaken, the molecular mechanism(s) of length-dependent activation is (are) still not fully understood. The giant sarcomere protein titin/connectin is the largest protein known to date. Titin/connectin is responsible for most passive force in vertebrate striated muscle and also functions as a molecular scaffold during myofibrillogenesis. Recent studies suggest that titin/connectin plays an important role in length-dependent activation by sensing stretch and promoting actomyosin interaction. Here we review and extend this previous work and focus on the mechanism by which titin/connectin might modulate actomyosin interaction. Lattice Spacing Muscle Length Sarcomere Length Passive Force Length Dependence Granzier, Henk L. aut Enthalten in Journal of muscle research and cell motility Kluwer Academic Publishers, 1980 26(2005), 6-8 vom: Dez., Seite 319-323 (DE-627)166717754 (DE-600)283053-X (DE-576)015170152 0142-4319 nnns volume:26 year:2005 number:6-8 month:12 pages:319-323 https://doi.org/10.1007/s10974-005-9038-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-WIW GBV_ILN_2007 GBV_ILN_2221 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4219 AR 26 2005 6-8 12 319-323 |
allfields_unstemmed |
10.1007/s10974-005-9038-1 doi (DE-627)OLC2067126938 (DE-He213)s10974-005-9038-1-p DE-627 ger DE-627 rakwb eng 590 570 VZ 12 ssgn BIODIV DE-30 fid Fukuda, Norio verfasserin aut Titin/connectin-based modulation of the Frank-Starling mechanism of the heart 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2006 Abstract The basis of the Frank-Starling mechanism of the heart is the increase in active force when muscle is stretched. Various findings have shown that muscle length, i.e., sarcomere length (SL), modulates activation of cardiac myofilaments at a given concentration of $ Ca^{2+} $ ([$ Ca^{2+} $]). This augmented $ Ca^{2+} $ activation with SL, commonly known as “length-dependent activation”, is manifested as the leftward shift of the force-pCa (=−log [$ Ca^{2+} $]) relation as well as by the increase in maximal $ Ca^{2+} $-activated force. Despite the numerous studies that have been undertaken, the molecular mechanism(s) of length-dependent activation is (are) still not fully understood. The giant sarcomere protein titin/connectin is the largest protein known to date. Titin/connectin is responsible for most passive force in vertebrate striated muscle and also functions as a molecular scaffold during myofibrillogenesis. Recent studies suggest that titin/connectin plays an important role in length-dependent activation by sensing stretch and promoting actomyosin interaction. Here we review and extend this previous work and focus on the mechanism by which titin/connectin might modulate actomyosin interaction. Lattice Spacing Muscle Length Sarcomere Length Passive Force Length Dependence Granzier, Henk L. aut Enthalten in Journal of muscle research and cell motility Kluwer Academic Publishers, 1980 26(2005), 6-8 vom: Dez., Seite 319-323 (DE-627)166717754 (DE-600)283053-X (DE-576)015170152 0142-4319 nnns volume:26 year:2005 number:6-8 month:12 pages:319-323 https://doi.org/10.1007/s10974-005-9038-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-WIW GBV_ILN_2007 GBV_ILN_2221 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4219 AR 26 2005 6-8 12 319-323 |
allfieldsGer |
10.1007/s10974-005-9038-1 doi (DE-627)OLC2067126938 (DE-He213)s10974-005-9038-1-p DE-627 ger DE-627 rakwb eng 590 570 VZ 12 ssgn BIODIV DE-30 fid Fukuda, Norio verfasserin aut Titin/connectin-based modulation of the Frank-Starling mechanism of the heart 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2006 Abstract The basis of the Frank-Starling mechanism of the heart is the increase in active force when muscle is stretched. Various findings have shown that muscle length, i.e., sarcomere length (SL), modulates activation of cardiac myofilaments at a given concentration of $ Ca^{2+} $ ([$ Ca^{2+} $]). This augmented $ Ca^{2+} $ activation with SL, commonly known as “length-dependent activation”, is manifested as the leftward shift of the force-pCa (=−log [$ Ca^{2+} $]) relation as well as by the increase in maximal $ Ca^{2+} $-activated force. Despite the numerous studies that have been undertaken, the molecular mechanism(s) of length-dependent activation is (are) still not fully understood. The giant sarcomere protein titin/connectin is the largest protein known to date. Titin/connectin is responsible for most passive force in vertebrate striated muscle and also functions as a molecular scaffold during myofibrillogenesis. Recent studies suggest that titin/connectin plays an important role in length-dependent activation by sensing stretch and promoting actomyosin interaction. Here we review and extend this previous work and focus on the mechanism by which titin/connectin might modulate actomyosin interaction. Lattice Spacing Muscle Length Sarcomere Length Passive Force Length Dependence Granzier, Henk L. aut Enthalten in Journal of muscle research and cell motility Kluwer Academic Publishers, 1980 26(2005), 6-8 vom: Dez., Seite 319-323 (DE-627)166717754 (DE-600)283053-X (DE-576)015170152 0142-4319 nnns volume:26 year:2005 number:6-8 month:12 pages:319-323 https://doi.org/10.1007/s10974-005-9038-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-WIW GBV_ILN_2007 GBV_ILN_2221 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4219 AR 26 2005 6-8 12 319-323 |
allfieldsSound |
10.1007/s10974-005-9038-1 doi (DE-627)OLC2067126938 (DE-He213)s10974-005-9038-1-p DE-627 ger DE-627 rakwb eng 590 570 VZ 12 ssgn BIODIV DE-30 fid Fukuda, Norio verfasserin aut Titin/connectin-based modulation of the Frank-Starling mechanism of the heart 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2006 Abstract The basis of the Frank-Starling mechanism of the heart is the increase in active force when muscle is stretched. Various findings have shown that muscle length, i.e., sarcomere length (SL), modulates activation of cardiac myofilaments at a given concentration of $ Ca^{2+} $ ([$ Ca^{2+} $]). This augmented $ Ca^{2+} $ activation with SL, commonly known as “length-dependent activation”, is manifested as the leftward shift of the force-pCa (=−log [$ Ca^{2+} $]) relation as well as by the increase in maximal $ Ca^{2+} $-activated force. Despite the numerous studies that have been undertaken, the molecular mechanism(s) of length-dependent activation is (are) still not fully understood. The giant sarcomere protein titin/connectin is the largest protein known to date. Titin/connectin is responsible for most passive force in vertebrate striated muscle and also functions as a molecular scaffold during myofibrillogenesis. Recent studies suggest that titin/connectin plays an important role in length-dependent activation by sensing stretch and promoting actomyosin interaction. Here we review and extend this previous work and focus on the mechanism by which titin/connectin might modulate actomyosin interaction. Lattice Spacing Muscle Length Sarcomere Length Passive Force Length Dependence Granzier, Henk L. aut Enthalten in Journal of muscle research and cell motility Kluwer Academic Publishers, 1980 26(2005), 6-8 vom: Dez., Seite 319-323 (DE-627)166717754 (DE-600)283053-X (DE-576)015170152 0142-4319 nnns volume:26 year:2005 number:6-8 month:12 pages:319-323 https://doi.org/10.1007/s10974-005-9038-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-WIW GBV_ILN_2007 GBV_ILN_2221 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4219 AR 26 2005 6-8 12 319-323 |
language |
English |
source |
Enthalten in Journal of muscle research and cell motility 26(2005), 6-8 vom: Dez., Seite 319-323 volume:26 year:2005 number:6-8 month:12 pages:319-323 |
sourceStr |
Enthalten in Journal of muscle research and cell motility 26(2005), 6-8 vom: Dez., Seite 319-323 volume:26 year:2005 number:6-8 month:12 pages:319-323 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Lattice Spacing Muscle Length Sarcomere Length Passive Force Length Dependence |
dewey-raw |
590 |
isfreeaccess_bool |
false |
container_title |
Journal of muscle research and cell motility |
authorswithroles_txt_mv |
Fukuda, Norio @@aut@@ Granzier, Henk L. @@aut@@ |
publishDateDaySort_date |
2005-12-01T00:00:00Z |
hierarchy_top_id |
166717754 |
dewey-sort |
3590 |
id |
OLC2067126938 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2067126938</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503170633.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10974-005-9038-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2067126938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10974-005-9038-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">590</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fukuda, Norio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Titin/connectin-based modulation of the Frank-Starling mechanism of the heart</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, Inc. 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The basis of the Frank-Starling mechanism of the heart is the increase in active force when muscle is stretched. Various findings have shown that muscle length, i.e., sarcomere length (SL), modulates activation of cardiac myofilaments at a given concentration of $ Ca^{2+} $ ([$ Ca^{2+} $]). This augmented $ Ca^{2+} $ activation with SL, commonly known as “length-dependent activation”, is manifested as the leftward shift of the force-pCa (=−log [$ Ca^{2+} $]) relation as well as by the increase in maximal $ Ca^{2+} $-activated force. Despite the numerous studies that have been undertaken, the molecular mechanism(s) of length-dependent activation is (are) still not fully understood. The giant sarcomere protein titin/connectin is the largest protein known to date. Titin/connectin is responsible for most passive force in vertebrate striated muscle and also functions as a molecular scaffold during myofibrillogenesis. Recent studies suggest that titin/connectin plays an important role in length-dependent activation by sensing stretch and promoting actomyosin interaction. Here we review and extend this previous work and focus on the mechanism by which titin/connectin might modulate actomyosin interaction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lattice Spacing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Muscle Length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sarcomere Length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Passive Force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Length Dependence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Granzier, Henk L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of muscle research and cell motility</subfield><subfield code="d">Kluwer Academic Publishers, 1980</subfield><subfield code="g">26(2005), 6-8 vom: Dez., Seite 319-323</subfield><subfield code="w">(DE-627)166717754</subfield><subfield code="w">(DE-600)283053-X</subfield><subfield code="w">(DE-576)015170152</subfield><subfield code="x">0142-4319</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:6-8</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:319-323</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10974-005-9038-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2221</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2005</subfield><subfield code="e">6-8</subfield><subfield code="c">12</subfield><subfield code="h">319-323</subfield></datafield></record></collection>
|
author |
Fukuda, Norio |
spellingShingle |
Fukuda, Norio ddc 590 ssgn 12 fid BIODIV misc Lattice Spacing misc Muscle Length misc Sarcomere Length misc Passive Force misc Length Dependence Titin/connectin-based modulation of the Frank-Starling mechanism of the heart |
authorStr |
Fukuda, Norio |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)166717754 |
format |
Article |
dewey-ones |
590 - Animals (Zoology) 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0142-4319 |
topic_title |
590 570 VZ 12 ssgn BIODIV DE-30 fid Titin/connectin-based modulation of the Frank-Starling mechanism of the heart Lattice Spacing Muscle Length Sarcomere Length Passive Force Length Dependence |
topic |
ddc 590 ssgn 12 fid BIODIV misc Lattice Spacing misc Muscle Length misc Sarcomere Length misc Passive Force misc Length Dependence |
topic_unstemmed |
ddc 590 ssgn 12 fid BIODIV misc Lattice Spacing misc Muscle Length misc Sarcomere Length misc Passive Force misc Length Dependence |
topic_browse |
ddc 590 ssgn 12 fid BIODIV misc Lattice Spacing misc Muscle Length misc Sarcomere Length misc Passive Force misc Length Dependence |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of muscle research and cell motility |
hierarchy_parent_id |
166717754 |
dewey-tens |
590 - Animals (Zoology) 570 - Life sciences; biology |
hierarchy_top_title |
Journal of muscle research and cell motility |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)166717754 (DE-600)283053-X (DE-576)015170152 |
title |
Titin/connectin-based modulation of the Frank-Starling mechanism of the heart |
ctrlnum |
(DE-627)OLC2067126938 (DE-He213)s10974-005-9038-1-p |
title_full |
Titin/connectin-based modulation of the Frank-Starling mechanism of the heart |
author_sort |
Fukuda, Norio |
journal |
Journal of muscle research and cell motility |
journalStr |
Journal of muscle research and cell motility |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
container_start_page |
319 |
author_browse |
Fukuda, Norio Granzier, Henk L. |
container_volume |
26 |
class |
590 570 VZ 12 ssgn BIODIV DE-30 fid |
format_se |
Aufsätze |
author-letter |
Fukuda, Norio |
doi_str_mv |
10.1007/s10974-005-9038-1 |
dewey-full |
590 570 |
title_sort |
titin/connectin-based modulation of the frank-starling mechanism of the heart |
title_auth |
Titin/connectin-based modulation of the Frank-Starling mechanism of the heart |
abstract |
Abstract The basis of the Frank-Starling mechanism of the heart is the increase in active force when muscle is stretched. Various findings have shown that muscle length, i.e., sarcomere length (SL), modulates activation of cardiac myofilaments at a given concentration of $ Ca^{2+} $ ([$ Ca^{2+} $]). This augmented $ Ca^{2+} $ activation with SL, commonly known as “length-dependent activation”, is manifested as the leftward shift of the force-pCa (=−log [$ Ca^{2+} $]) relation as well as by the increase in maximal $ Ca^{2+} $-activated force. Despite the numerous studies that have been undertaken, the molecular mechanism(s) of length-dependent activation is (are) still not fully understood. The giant sarcomere protein titin/connectin is the largest protein known to date. Titin/connectin is responsible for most passive force in vertebrate striated muscle and also functions as a molecular scaffold during myofibrillogenesis. Recent studies suggest that titin/connectin plays an important role in length-dependent activation by sensing stretch and promoting actomyosin interaction. Here we review and extend this previous work and focus on the mechanism by which titin/connectin might modulate actomyosin interaction. © Springer Science+Business Media, Inc. 2006 |
abstractGer |
Abstract The basis of the Frank-Starling mechanism of the heart is the increase in active force when muscle is stretched. Various findings have shown that muscle length, i.e., sarcomere length (SL), modulates activation of cardiac myofilaments at a given concentration of $ Ca^{2+} $ ([$ Ca^{2+} $]). This augmented $ Ca^{2+} $ activation with SL, commonly known as “length-dependent activation”, is manifested as the leftward shift of the force-pCa (=−log [$ Ca^{2+} $]) relation as well as by the increase in maximal $ Ca^{2+} $-activated force. Despite the numerous studies that have been undertaken, the molecular mechanism(s) of length-dependent activation is (are) still not fully understood. The giant sarcomere protein titin/connectin is the largest protein known to date. Titin/connectin is responsible for most passive force in vertebrate striated muscle and also functions as a molecular scaffold during myofibrillogenesis. Recent studies suggest that titin/connectin plays an important role in length-dependent activation by sensing stretch and promoting actomyosin interaction. Here we review and extend this previous work and focus on the mechanism by which titin/connectin might modulate actomyosin interaction. © Springer Science+Business Media, Inc. 2006 |
abstract_unstemmed |
Abstract The basis of the Frank-Starling mechanism of the heart is the increase in active force when muscle is stretched. Various findings have shown that muscle length, i.e., sarcomere length (SL), modulates activation of cardiac myofilaments at a given concentration of $ Ca^{2+} $ ([$ Ca^{2+} $]). This augmented $ Ca^{2+} $ activation with SL, commonly known as “length-dependent activation”, is manifested as the leftward shift of the force-pCa (=−log [$ Ca^{2+} $]) relation as well as by the increase in maximal $ Ca^{2+} $-activated force. Despite the numerous studies that have been undertaken, the molecular mechanism(s) of length-dependent activation is (are) still not fully understood. The giant sarcomere protein titin/connectin is the largest protein known to date. Titin/connectin is responsible for most passive force in vertebrate striated muscle and also functions as a molecular scaffold during myofibrillogenesis. Recent studies suggest that titin/connectin plays an important role in length-dependent activation by sensing stretch and promoting actomyosin interaction. Here we review and extend this previous work and focus on the mechanism by which titin/connectin might modulate actomyosin interaction. © Springer Science+Business Media, Inc. 2006 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-WIW GBV_ILN_2007 GBV_ILN_2221 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4219 |
container_issue |
6-8 |
title_short |
Titin/connectin-based modulation of the Frank-Starling mechanism of the heart |
url |
https://doi.org/10.1007/s10974-005-9038-1 |
remote_bool |
false |
author2 |
Granzier, Henk L. |
author2Str |
Granzier, Henk L. |
ppnlink |
166717754 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10974-005-9038-1 |
up_date |
2024-07-03T13:51:29.477Z |
_version_ |
1803566123031986176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2067126938</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503170633.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10974-005-9038-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2067126938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10974-005-9038-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">590</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fukuda, Norio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Titin/connectin-based modulation of the Frank-Starling mechanism of the heart</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, Inc. 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The basis of the Frank-Starling mechanism of the heart is the increase in active force when muscle is stretched. Various findings have shown that muscle length, i.e., sarcomere length (SL), modulates activation of cardiac myofilaments at a given concentration of $ Ca^{2+} $ ([$ Ca^{2+} $]). This augmented $ Ca^{2+} $ activation with SL, commonly known as “length-dependent activation”, is manifested as the leftward shift of the force-pCa (=−log [$ Ca^{2+} $]) relation as well as by the increase in maximal $ Ca^{2+} $-activated force. Despite the numerous studies that have been undertaken, the molecular mechanism(s) of length-dependent activation is (are) still not fully understood. The giant sarcomere protein titin/connectin is the largest protein known to date. Titin/connectin is responsible for most passive force in vertebrate striated muscle and also functions as a molecular scaffold during myofibrillogenesis. Recent studies suggest that titin/connectin plays an important role in length-dependent activation by sensing stretch and promoting actomyosin interaction. Here we review and extend this previous work and focus on the mechanism by which titin/connectin might modulate actomyosin interaction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lattice Spacing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Muscle Length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sarcomere Length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Passive Force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Length Dependence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Granzier, Henk L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of muscle research and cell motility</subfield><subfield code="d">Kluwer Academic Publishers, 1980</subfield><subfield code="g">26(2005), 6-8 vom: Dez., Seite 319-323</subfield><subfield code="w">(DE-627)166717754</subfield><subfield code="w">(DE-600)283053-X</subfield><subfield code="w">(DE-576)015170152</subfield><subfield code="x">0142-4319</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:6-8</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:319-323</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10974-005-9038-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2221</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2005</subfield><subfield code="e">6-8</subfield><subfield code="c">12</subfield><subfield code="h">319-323</subfield></datafield></record></collection>
|
score |
7.4011774 |